HELICAL MICRO-HOLE DRILLING OF CHEMICALLY STRENGTHENED GLASS USING CAPSULE-SHAPED ELECTROPLATED DIAMOND TOOL
Abstract
This study investigates the micro-hole drilling performance of chemically strengthened glass plate by using a capsule-shaped electroplated diamond tool and the helical drilling method. Three different helical pitch conditions were tested to drill holes with a diameter of 1 mm. The number of drilled holes, grinding force, and maximum crack size were measured along with the observation of the drilled holes to evaluate the performance of the micro-hole drilling. From the experimental results, it was found that as the size of helical pitch decreased, the number of drilled holes increases where the average grinding force generated becomes smaller. By using small helical pitch condition, 43 holes could be drilled but the maximum crack size generated at the outlet side of the drilled hole is not able to achieve the high-grade quality compared to the inlet side. The resultant grinding force generated when the tool tip nearing the outlet side of the glass plate has caused the large crack at a certain position on the outlet side.
Downloads
References
R.E. Smallman and R.J. Bishop, Modern physical metallurgy and materials engineering. Oxford: Butterworth-Heinemann, 1999.
D. Uhlmann and N.J. Kreidl, Elasticity and Strength in Glasses: Glass: Science and Technology. USA: Academic Press, 2012.
K. Noma, Y. Kakinuma, T. Aoyama and S. Hamada, “Ultrasonic vibration-assisted machining of chemically strengthened glass with workpiece bending”, Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 9, no. 2, pp. JAMDSM0016-JAMDSM0016, 2015.
K. Noma, Y. Takeda, T. Aoyama, Y. Kakinuma and S. Hamada, “High-precision and high-efficiency micromachining of chemically strengthened glass using ultrasonic vibration”, Procedia CIRP, vol. 14, pp. 389-394, 2014.
K. Noma, Y. Kakinuma, T. Aoyama and S. Hamada, “A Study on Slotted Hole Processing of Chemically Strengthened Glass Using Ultrasonic Vibration”, in Proceedings of JSPE Semestrial Meeting, Tottori, Japan, 2014, pp. 629-630 (in Japanese).
K. Egashira, R. Kumagai, R. Okina, K. Yamaguchi and M. Ota, “Drilling of microholes down to 10 μm in diameter using ultrasonic grinding”, Precision Engineering, vol. 38, no. 3, pp. 605-610, 2014.
J. Wang, P. Feng, J. Zheng and J. Zhang, “Improving hole exit quality in rotary ultrasonic machining of ceramic matrix composites using a compound step-taper drill”, Ceramics International, vol. 42, no. 12, pp. 13387-13394, 2016.
S.T. Chen, Z.H. Jiang, Y.Y. Wu and H.Y. Yang, “Development of a grinding–drilling technique for holing optical grade glass”, International Journal of Machine Tools and Manufacture, vol. 51, no.2, pp.95-103, 2011.
Y. Xu, J. Chen, B. Jiang and J. Ni, “Investigation of micro-drilling using electrochemical discharge machining with counter resistant feeding”, Journal of Materials Processing Technology, vol. 257, pp.141-147, 2018.
C.T. Yang, S.S. Ho and B.H. Yan, “Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM)”, Key Engineering Materials, vol. 196, pp.149-166, 2001.
J.B. Madhavi and S.S. Hiremath, “Investigation on Machining of Holes and Channels on Borosilicate and Sodalime Glass using μ-ECDM Setup”, Procedia Technology, vol. 25, pp.1257-1264, 2016.
H. Li, J. Wang, N. Kwok, T. Nguyen and G.H. Yeoh, “A study of the micro-hole geometry evolution on glass by abrasive air-jet micromachining”, Journal of Manufacturing Processes, vol. 31, pp.156-161, 2018.
K. Honda, A. Mizobuchi and T. Ishida, “Investigation of Grinding Fluid for Prevention of Chip Adhesion in Miniature Drilling of Glass Plate Using Electroplated Diamond Tool”, Key Engineering Materials, vol. 749, pp. 52-57, 2017.
A. Mizobuchi, K. Honda and T. Ishida, “Improved Chip Discharge in Drilling of Glass Plate Using Back Tapered Electroplated Diamond Tool”, International Journal of Precision Engineering and Manufacturing, vol. 18, no. 9, pp. 1197-1204, 2017.
A. Mizobuchi, Y. Kagawa and T. Ishida, “Miniature Drilling of Chemically Strengthened Glass Plate Using Electroplated Diamond Tool”, International Journal of Automation Technology, vol. 10, no. 5, pp. 780-785, 2016.