THERMAL ANALYSIS AND MICROSTRUCTURAL STUDY OF POROUS β-TiNb INCORPORATED WITH TiH2 POWDER VIA LOW-COST PROCESSING ROUTE
Abstract
In the development of Ti-based alloy bio-implant material, Titanium Hydride (TiH2) which is commonly used as a pore former agent has become one of the new approaches of starting material via powder metallurgy processing route with the aim of low-cost production in the fabrication of Beta-typed Titanium Niobium (β-TiNb) alloy. However, the thermal behaviour of TiNb alloy by TiH2 substitution is still not well understood. Thus, in the present work the compacted of Ti and Nb mixture was subjected to thermal analysis via differential thermal analysis (DTA) and dilatometry to evaluate thermal events existed during sintering process. It was found that the overall reaction had undergone four-step processes; the first two steps were subjected to the dehydrogenation process whereas the last two steps corresponded to the formation of TiNb alloy. In addition, the β phase of TiNb exhibited better appearance at 1200°C sintered temperature which was supported by X-ray Diffraction (XRD) analysis.
Downloads
References
M. H. Ismail, “Porous NiTi alloy by metal injection moulding (MIM) using partly water soluble binder system,” Ph.D. thesis, Department of Materials Science and Engineering, The University of Sheffield, United Kingdom, 2012.
M.-K. Han, J.-Y. Kim, M.-J. Hwang, H.-J. Song and Y.-J. Park, “Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb Alloys”, Materials, vol. 8, no. 9, pp. 5986–6003, 2015.
M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review”, Progress in Material Sciences, vol. 54, no. 3, pp. 397–425, 2009.
M. H. Ismail, R. Goodall, H. A. Davies and I. Todd, “Formation of microporous NiTi by transient liquid phase sintering of elemental powders”, Material Sciences and Engineering C, vol. 32, no. 6, pp. 1480–1485, 2012.
K. Zhuravleva, A. Chivu, A. Teresiak, S. Scudino, M. Calin, L. Schultz, J. Eckert and A. Gebert, “Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications”, Material Sciences and Engineering C, vol. 33, no. 4, pp. 2280–2287, 2013.
G. Chen, P. Cao and N. Edmonds, “Porous NiTi alloys produced by press-and-sinter from Ni/Ti and Ni/TiH2 mixtures”, Materials Science & Engineering: A, vol. 582, pp. 117–125, 2013.
J. Davidson and P. Kovacs, “Biocompatible low modulus titanium alloy for medical implants,” US Patent US5169597A, 1992.
Y. Liu, L. F. Chen, H. P. Tang, C. T. Liu, B. Liu and B. Y. Huang, “Design of powder metallurgy titanium alloys and composites”, Material Sciences and Engineering A, vol. 418, no. 1-2, pp. 25–35, 2006.
I. A. Mwamba and L. H. Chown, “The use of titanium hydride in blending and mechanical alloying of Ti-Al alloys”, Journal of the South African Institute of Mining and Metallurgy, vol. 111, no. 3, pp. 159–165, 2011.
O. M. Ivasishin and V. Moxson, “Low-cost titanium hydride powder metallurgy”, Titanium Powder Metallurgy: Science, Technology and Applications, pp. 117–148, 2015.
B. Sharma, S. K. Vajpai and K. Ameyama, “Microstructure and properties of beta Ti-Nb alloy prepared by powder metallurgy route using titanium hydride powder”, Journal of Alloys and Compounds., vol. 656, pp. 978–986, 2015.
H. H. Mohd Zaki and J. Abdullah, “Comparison studies on solid state diffusion of Ni–Ti and Ni–TiH2 under CaH2 reducing environment”, Material Letters, vol. 121, pp. 36–39, 2014.
S. M. Hosnie, M. H. Ismail, M. Yahaya, N. A. Haris and I. Todd, “Fabrication of porous β-Type Ti-40Nb alloys incorporated with TiH2 via powder metallurgy processing route under reducing environment”, Journal of Mechanical Engineering, vol. 2, pp. 99-112, 2017.
Y.-H. Hon, J.-Y. Wang and Y.-N. Pan, “Composition/Phase structure and properties of Titanium-Niobium alloys”, Materials Transactions, vol. 44, no. 11, pp. 2384–2390, 2003.
H.T. Wang, M. Lefler, Z. Z. Fang, T. Lei, S. Fang, J. Zhang and Q. Zhao, “Titanium and titanium alloy via sintering of TiH2”, Key Engineering Materials, vol. 436, pp. 157–163, 2010.
V. Bhosle, E. . Baburaj, M. Miranova and K. Salama, “Dehydrogenation of TiH2”, Material Sciences and Engineering A, vol. 356, no. 1-2, pp. 190–199, 2003.
D. Mandrino, I. Paulin and S. D. Škapin, “Scanning electron microscopy, X-ray diffraction and thermal analysis study of the TiH2 foaming agent”, Materials Characterization, vol. 72, pp. 87–93, 2012.
H. Wang, Z. Z. Fang and P. Sun, “A critical review of mechanical properties of powder metallurgy titanium”, International Journal of Powder Metallurgy, vol. 46, no. 5, pp. 45–57, 2010.
W. Ahmed and M. J. Jackson, Surgical Tools and Medical Devices. Cham: Springer International Publishing, 2007.
V. A. R. Henriques, E. T. Galvani, S. L. G. Petroni, M. S. M. Paula and T. G. Lemos, “Production of Ti-13Nb-13Zr alloy for surgical implants by powder metallurgy”, Journal of Material Sciences, vol. 45, no. 21, pp. 5844–5850, 2010.
C.I. Pascu, O. Gingu, P. Rotaru, I. Vida-Simiti, A. Harabor and N. Lupu, “Bulk titanium for structural and biomedical applications obtaining by spark plasma sintering ( SPS ) from titanium hydride powder”, Journal of Thermal Analysis and Calorimetry, vol. 113, no. 2, pp. 103–105, 2013.
R. M. German, Sintering Theory and Practice. Toronto: John Wiley & Sons, 1996.
F.C. Campbell, Manufacturing Technology for Aerospace Structural Materials. Netherlands: Elsevier Science, 2006.
H. Liu, P. He, J. C. Feng and J. Cao, “Kinetic study on nonisothermal dehydrogenation of TiH2 powders”, International Journal of Hydrogen Energy, vol. 34, no. 7, pp. 3018–3025, 2009.
K. Mallick, Bone Substitute Biomaterials. Netherlands: Elsevier Science, 2014.
D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit and F. Pyczak, “Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial”, Journal of Alloys and Compounds, vol. 640, pp. 393–400, 2015.
Authors who publish with this journal agree to the following terms:
- Authors transfer copyright to the publisher as part of a journal publishing agreement with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after the manuscript is accepted, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).