Improving Quality of Light Commercial Vehicle Using PDCA Approach
Abstract
Good quality coating in painting process of light commercial vehicle is important to reduce cost and concurrently achieve customer satisfaction. The PDCA-cycle approach is utilized to reduce the defects in the electrodeposition process. In this study the bits defect on the electrodeposited body is investigated. A systematic quality improvement plan and optimization are performed. The application of the PDCA-cycle improved 65% of bits and reduced 34% of sanding man hour.
Downloads
References
E. J. Escalante, “Quality and productivity improvement: a study of variation and defects in manufacturing,” Quality Engineering, vol. 11, no. 9, pp. 427–442, 1999.
H. Navipour, N. D. Nayeri, A. Hooshmand and M. T. Zargar, “An investigation into the effects of quality improvement method on patients’ satisfaction: a semi experimental research in Iran,” Acta Medica Iranica, vol. 49, no. 1, pp. 38, 2011.
J. V. Kovach, E. A. Cudney and C. C. Elrod, “The use of continuous improvement techniques: A survey-based study of current practice,” International Journal Engineering Science Technology, vol. 3, pp. 89–100, 2011.
N. A. Mohd Salleh, S. Kasolang, A. Jaffar and N. H. Abdul Halim, “Lean TQM leadership management practices in Malaysian automotive companies,” Jurnal Teknologi, vol. 76, no. 6, pp. 1–6, 2015.
M. Soković, J. Jovanović, Z. Krivokapić and A. Vujović., “Basic quality tools in continuous improvement process,” Strojnik Vestnik/Journal Mechanical Engineering, vol. 55, pp. 1–9, 2009.
V. Singh, “PDCA Cycle: A Quality Approach”, Utthan–The Journal Management Science, vol. 1, no. 1, pp. 89-96, 2013.
W. Hong, C. Ying and C. Wen-Sheng, “Application of PDCA-cycle on the management of critical values reporting,” Advanced Material Research, vol. 712–715, pp. 3203–3206, 2013.
S. A. Islam and T. Ahmed, “Improving FTT by using PDCA cycle in RMG sector- a case study,” in the Proceedings of 9th Asian Business Research Conference, Dhaka, Bangladesh, 2013.
Y. Oyabu, N. Furuno, Y. Hirasawa, and H. Omori, “Electrodeposition coating process for automobile bodies,” Transaction Iron Steel Institute Japan, vol.23, no. 99, pp. 994–1008, 1983.
K. Bewilogua, G. Bräuer, A. Dietz, J. Gäbler, G. Goch, B. Karpuschewski, and B. Szyszka, “Surface technology for automotive engineering,” CIRP Annal - Manufacturing. Technology, vol. 58, pp. 608–627, 2009.
I. Krylova, “Painting by electrodeposition on the eve of the 21st century,” Progress Organic Coatings, vol. 42, pp. 119–131, 2001.
F. Beck, “Fundamental aspects of electrodeposition of paint,” Progress Organic Coatings, vol. 4, pp. 1–60, 1976.
S. D. Bhosale, S. C. Shilwant, and S. R. Patil, “Quality improvement in manufacturing processes using SQC tools,” International Journal Engineering Research and Application, vol. 3, pp. 832–837, 2013.
R. H. Fouad and A. Mukattash, “Statistical process control tools : a practical guide for Jordanian industrial organizations,” Jordan Journal Mechanical Industrial Engineering, vol. 4, no. 6, pp. 693–700, 2010.
Authors who publish with this journal agree to the following terms:
- Authors transfer copyright to the publisher as part of a journal publishing agreement with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after the manuscript is accepted, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).