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ABSTRACT: Effective management of spare parts inventory is essential for 

maintaining uninterrupted industrial operations. Traditional systems often 

struggle to adapt to the dynamic uncertainties of machine health and lead 

times, which can result in inadequate inventory levels and increased 

downtime. This research introduces a novel integration of fuzzy logic control 

to improve inventory management by addressing these uncertainties. The 

study focuses on spare part management in a wood substitute manufacturing 

case involving the refiner process, utilizing a min-max inventory strategy in 

conjunction with a fuzzy inference system that evaluates machine health and 

lead times. Various fuzzy numbers, including triangular, trapezoidal, 

pentagonal, and hexagonal, are employed to model these uncertainties, 

leading to reduced holding and stock costs compared to conventional 

approaches. The results show that the total cost under the fuzzy inventory 

control policy is approximately three times lower and substantially less than 

that of the non-fuzzy policy, as confirmed by 95% confidence intervals that are 

clearly distinct. However, the analysis reveals no significant difference among 

the fuzzy numbers, indicating flexibility in selection based on specific 

application needs. Overall, this work underscores the potential of fuzzy logic 

control to optimize spare part inventory management in industrial contexts. 
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1.0 INTRODUCTION 
 

Efficient management of spare parts inventory is critical for ensuring 

uninterrupted operations in various industrial environments. Traditional 

inventory management systems often find it challenging to respond to the 

dynamic and uncertain nature of machine health status and lead times, 

resulting in suboptimal inventory levels and increased downtime. To 

address these challenges, the integration of fuzzy logic control presents a 

promising strategy to enhance spare part inventory management by 

incorporating the inherent uncertainty and imprecision associated with 

machine health status and lead times. Machine health status is a critical 

factor influencing the demand for spare parts. As machines operate, their 

health status can deteriorate over time due to factors such as wear and tear, 

aging components, or environmental conditions. A decline in machine 

health can heighten the likelihood of component failures or malfunctions, 

leading to increased demand for spare parts necessary for repairs and 

maintenance activities. 

This research focuses on a case study of a manufacturing company 

producing medium-density fiberboard (MDF) in Thailand. The continuous 

production process of MDF is illustrated in Figure 1. 

 

Figure 1: Operation process chart of medium-density fiberboard. 

Our study focused on the pulping process, where the refiner plays a crucial 

role. The segments of the refiner, as depicted in Figure 2, are spare parts. 

Currently, inventory management follows the min-max inventory policy. 

The minimum inventory level (Min) serves as a reorder point, triggered 

when the total inventory, comprising on-hand and in-transit stock, falls 

below the Min threshold. At this point, the order quantity (Q) is adjusted to 

reach the maximum inventory level (Max). The Q value can be determined 

either as the difference between Max and Min or calculated using the 

economic order quantity formula. Consequently, the maximum inventory 
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level (Max) is the sum of the minimum level (Min) and the order quantity 

(Q). Figure 3 illustrates the inventory control process for these spare parts. 

The primary drawback of the current inventory management system is its 

failure to account for the stochastic nature of machine conditions and spare 

part lead times. This limitation can result in overstocking or understocking, 

leading to increased inventory management costs. 

 
Figure 2: Refiner segments of defibrator. 

 
Figure 3: Refiner segments inventory level by month. 

 

The objective of this research is to propose a spare parts inventory system 

using fuzzy logic control to address the uncertainties associated with 

machine health and spare part lead times. The existing approach for 

determining order quantity based on a fixed maximum may not be ideal. 

By modeling the uncertainties in machine health indicators and lead time 

forecasts, the system seeks to optimize inventory levels. Integrating fuzzy 

logic assessments into the replenishment decision-making process can 

enhance inventory management efficiency, improve resilience to 

uncertainty, and reduce overall inventory costs. 

A fuzzy inference system is employed to establish relationships between 

input and output variables within a system. In this context, precise inputs 

are transformed into fuzzy inputs through a fuzzification interface. 

Following fuzzification, a rule base is created. The combination of the rule 
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base and database forms the knowledge base. Defuzzification is then 

applied to convert the fuzzy values back into actual output values. Fuzzy 

inference systems are utilized in various fields, including management and 

manufacturing contexts [1–5]. Fuzzy control has emerged as a promising 

method for addressing the complexities inherent in probabilistic inventory 

models, particularly when dealing with uncertainties. Hsieh [6] proposed a 

fuzzy inventory model tailored for the computer mouse industry, which 

accounts for uncertainties in demand and lead time while focusing on order 

quantities, reorder points, and safety stock. The study’s results indicate that 

utilizing trapezoidal fuzzy numbers can minimize total annual inventory 

and safety stock costs. Similarly, De and Rawat [7] developed exponential 

fuzzy numbers to address uncertainties related to demand and lead time, 

concentrating on order quantities and safety stock. Their findings 

demonstrate that using exponential fuzzy numbers facilitates sensitivity 

analysis of optimized parameters in response to variations in service levels. 

Aengchuan and Phruksaphanrat [8] applied fuzzy logic to determine order 

quantities and reorder points in the wood-based furniture industry, 

considering uncertainties in both demand and supply. Their results reveal 

that the proposed fuzzy inventory system (FIS) can achieve lower costs 

compared to traditional  

 

FIS lot-sizing methods. Uthayakumar and Karuppasamy [9] developed a 

fuzzy inventory model for lot sizing in the healthcare sector by 

incorporating demand variables, storage costs, order costs, and order 

quantities. Their research suggests that using triangular fuzzy numbers 

results in a total cost slightly higher than that of a crisp model. Jamegh et 

al. [10] created a fuzzy logic system for determining safety stocks in the 

dairy processing industry while considering factors such as demand, raw 

material availability, end-of-stock, and safety stock. Their findings indicate 

that implementing trapezoidal fuzzy numbers positively affects the 

reduction of safety stock levels. However, in terms of fuzzy inventory, 

researchers are increasingly interested not only in inventory management 

parameters but also in related issues. These include active steering control 

systems [11], hard turning [12], machine deterioration [13, 14], carbon 

emissions [15–17], defective items [18], financial issues [19], and 

transportation scheduling [20], among others. 
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Based on the aforementioned literature, although significant advancements 

have clearly been made in inventory management within fuzzy 

environments, the application to spare part inventory systems, particularly 

those incorporating condition-based maintenance strategies, remains 

largely unexamined. This study addresses this research gap by proposing 

a novel inventory control framework that utilizes fuzzy logic modeling 

alongside machine health monitoring. By using machine health status as a 

determinant of spare part demand and accounting for variability in order 

lead times, the proposed system introduces a more responsive and adaptive 

inventory strategy. 

 

This research contributes to the development of robust and adaptive 

inventory systems capable of tackling the challenges posed by uncertainties 

in machine health status and order lead times. Unlike traditional models 

that operate under deterministic assumptions, our approach employs fuzzy 

logic control to manage and model the ambiguity common in real-world 

industrial operations, thus enhancing decision-making under uncertainty. 

This integration not only strengthens the connection between predictive 

maintenance and inventory planning but also promotes greater operational 

resilience and cost efficiency. The framework adds to the growing body of 

research in FISs by providing a practical and empirically validated model 

adaptable to continuous production environments. Through a real-world 

case study involving the MDF industry, this study aims to demonstrate 

both the theoretical contributions and practical implications of this 

enhanced fuzzy logic-based inventory system for industrial practitioners 

and researchers alike. 

 

2. RESEARCH METHOD 
 

This study introduces a novel fuzzy logic-based inventory management 

framework aimed at addressing uncertainties in spare part lifetime and 

lead time, particularly in continuous manufacturing environments. In 

contrast to traditional systems that depend on fixed reorder points and 

simplistic assumptions about uncertainty, this approach integrates the 

entire modeling, inference, and evaluation process. The research begins 

with the formulation of real-world problems and advances through fuzzy 

system development, rule-based inference using a Mamdani fuzzy 
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inference system, and uncertainty modeling via Monte Carlo simulation, 

culminating in a cost-based performance evaluation. Major features include 

the utilization of machine health indicators and stochastic lead times as 

fuzzy input variables, representing a condition-based inventory strategy 

that is seldom considered in conventional models. In addition, the study 

employs four types of fuzzy numbers, namely, triangular, trapezoidal, 

pentagonal, and hexagonal, to represent uncertainty in the output variable 

flexibly, allowing for a detailed comparison of their performance. By 

integrating these elements, the proposed framework provides a 

comprehensive and adaptable decision-support system that enhances 

inventory control under uncertainty, ultimately contributing to more 

resilient and cost-efficient industrial operations. 

 

This section outlines the methodology used for developing, testing, and 

evaluating the FIS for managing spare part inventory. Figure 4 illustrates 

the research framework. The first step involved identifying the problem to 

be addressed. A case study of the manufacturing process at a company 

producing MDF in Thailand was conducted to define the objectives, scope, 

and various requirements. Next, the FIS was developed, followed by a 

numerical experiment for evaluation. Finally, the results are summarized 

and discussed. 
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Figure 4: Research method. 

 

 

 

 

2.1 Development of the FIS 

The development of the FIS consisted of three core components: fuzzy 

inputs, fuzzy outputs, and fuzzy rules. The system included two fuzzy 

input variables: spare part lifetime and order lead time, both represented 

by triangular membership functions derived from historical data and 

observations. A single fuzzy output variable, the maximum quantity, was 

defined using various types of fuzzy numbers, including triangular, 

trapezoidal, pentagonal, and hexagonal. 

 

A fuzzy set is characterized by a membership function that assigns values 

ranging from [0, 1] to elements within a domain, space, or universe of 

discourse X. In this context, a fuzzy set 𝐴̃ in the universe X is represented 

by a set of pairs as follows: 

 

Development of the Fuzzy Inventory System 

• Design Fuzzy Input 

• Design Fuzzy Output 

• Identify Fuzzy Rule 

Numerical Experiment 

• Probability Distributions Test 

• Monte Carlo Simulation 

• Evaluate Result 

Summary Result 

and Discussion 

Problem Formulation 
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𝐴̃ = {𝑥, 𝜇𝐴(𝑥); 𝑥 ∈ 𝑋}     (1) 

 

where 𝜇𝐴: 𝑋 ∈→ [0,1] is a mapping known as the degree of membership 

function of the fuzzy set A and 𝜇𝐴(𝑥) is known as the membership value of 

𝑥 ∈ 𝑋 in the fuzzy set 𝐴̃. These membership grades are typically expressed 

as real numbers within the range of [0,1]. A fuzzy number 𝐴̃, defined as a 

fuzzy set on the real line R, must satisfy the following conditions: 

i. 𝜇𝐴̃(𝑥0) is piecewise continuous. 

ii. There exists at least one 𝑥 ∈ 𝑋 with 𝜇𝐴̃(𝑥0) = 1. 

iii. 𝐴̃ must be normal and convex. 

 

In this study, four fuzzy sets are investigated; 1) triangular fuzzy set, 2) 

trapezoidal fuzzy set, 3) pentagonal fuzzy set, and 4) hexagonal fuzzy set. 

Further details on these fuzzy sets can be found in Chakraborty et al. [14] 

and Pathinathan and Ponnivalavan [21]. Subsequently, a fuzzy rule base 

consisting of nine rules was constructed using the Mamdani fuzzy 

inference approach. These rules establish relationships between input 

levels (low, medium, and high) and output levels (low, medium, and high). 

The max-min compositional operation in fuzzy reasoning produces fuzzy 

outputs. These outputs can be expressed as 

𝜇𝑄(𝑦) = (𝜇𝐷1
(𝑥1) ∩ 𝜇𝐿𝑇1

(𝑥2)) ∪. . (𝜇𝐷𝑛
(𝑥1) ∩  𝜇𝐿𝑇𝑛

(𝑥2))   (2) 

where  ∩ signifies the minimum operation and ∪ signifies the maximum 

operation. Di, LTi, and Qi are fuzzy subsets defined by the corresponding 

membership functions. Afterward, to translate the fuzzy outputs into 

precise values, the center-of-gravity method was applied for 

defuzzification. This method is used to transform the fuzzy inference 

output into a non-fuzzy value, as expressed by 

𝑦 =
∑ 𝑦(𝜇𝑄(𝑦))

∑ 𝜇𝑄(𝑦)
      (3) 

2.2 Numerical Experiment Design 

A Monte Carlo simulation was performed to model the range of 

outcomes while considering uncertainties in demand, lifetime, and lead 

time based on 36 months of historical inventory data from the refiner 

segment. A statistical analysis was conducted to assign appropriate 
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probability distributions to the input variables; the analysis validated 

through a chi-square test. Utilizing random parameters based on their 

respective distributions, the simulation was performed for 30 runs. 

Inventory costs were analyzed with respect to ordering costs, which include 

expenses related to placing and receiving orders, and holding costs, which 

encompass storage expenses and opportunity costs, with an annual interest 

rate of 1.5%. A cost analysis was conducted by varying parameters such as 

spare part lifetime and lead time, calculating inventory costs with different 

fuzzy numbers, and comparing average monthly inventory costs. The 

assumptions, notations, and equations for the analysis are provided as 

follows. Assumption: 

i. The demand for refiner segments of the defibrator is uncertain 

and depends on the machine’s health status. 

ii. Order lead time is unpredictable but can be estimated using 

available data and expert knowledge. 

iii. Shortages are not allowed. 

Notation: 

O:  Ordering cost per order 

K:  Number of orders per year 

H: Holding cost per unit 

Qh:  Holding quantity per year 

C:  Unit price 

 I:  Interest rate 

The inventory cost, including ordering cost, holding cost, spare part cost, 

and total cost are expressed via the following Equations (4)–(6), 

respectively. 

Ordering cost = KO    (4) 

Holding cost = (H+IC)Qh   (5) 

Total cost = KO+ (H+IC)Qh   (6) 

 

Finally, the overall inventory management costs that include ordering, 

holding, and stock costs were computed. These results were further 

assessed through a 95% confidence interval analysis to compare the 

effectiveness of various inventory control policies. 

 

3. RESULTS AND DISCUSSION 
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3.1 FIS Model 

 

The proposed FIS model consists of three components: fuzzy inputs, fuzzy 

outputs, and fuzzy rules. The two fuzzy input variables are spare part 

lifetime and order lead time, and the output variable is the maximum 

quantity. These variables are expressed using linguistic terms. 

  

 3.1.1 Fuzzy Inputs 

 

The fuzzy inputs include spare part lifetime and order lead time, described 

by the membership functions 𝜇𝐿 and 𝜇𝐿𝑇, respectively. Fuzzy lifetime and 

lead time were established based on observations and historical data 

analysis. Each is categorized into three linguistic values of low, medium, 

and high, as illustrated in Figure 5. The input parameters were shaped by a 

normal distribution that that captures the uncertainty concerning spare part 

lifetime and lead time. The universe of discourse for the spare part lifetime 

is defined over the interval [min(L), max(L)], where min(L) and max(L) 

denote the minimum and maximum observed lifetimes, respectively. 

Membership functions for the lifetime are defined by the parameters 

(min(L), 𝐿̅ − 3𝜎𝐿, 𝐿̅, 𝐿̅ + 3𝜎𝐿, max(L)), as shown in Figure 5(a). Likewise, the 

universe of discourse for the lead time input space is defined within the 

interval [min(LT), max(LT)], where min(LT) and max(LT) denote the 

minimum and maximum observed lead times, respectively. Membership 

functions for lead time are determined by these parameters (min(LT), 𝐿𝑇̅̅̅̅ −

3𝜎𝐿𝑇, 𝐿𝑇̅̅̅̅ , 𝐿𝑇̅̅̅̅ + 3𝜎𝐿𝑇, max(LT)), as shown in Figure 5(b). 

 

 
(a)      (b) 

Figure 5: Input membership functions: (a) spare part lifetime MFs and b) lead 

time MFs. 
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 3.1.2 Fuzzy Outputs 

Traditional min-max inventory models rely on a fixed maximum quantity 

value. However, in practice, uncertainties in demand and lead time render 

fixed values unsuitable, particularly given the irregularities in demand 

patterns. To address this, a fuzzy output is proposed, namely, the fuzzy 

maximum quantity, which is defined by membership functions denoted as 

𝜇𝑄 . This fuzzy maximum quantity is categorized into three linguistic 

values: low, medium, and high. The range for the maximum quantity 

output is established within the interval [min(Q), max(Q)], where max(Q) 

signifies the highest observed quantity in current practices, whereas min(Q) 

targets minimizing the total inventory cost. In addition, we aim to illustrate 

various types of fuzzy numbers to provide decision-makers with a plethora 

of options.  

Therefore, classical triangular and trapezoidal fuzzy numbers were used in 

this research, alongside pentagonal and hexagonal fuzzy numbers, which 

offer additional capacity to convey uncertain knowledge and formulate 

responses. Figure 6 illustrates the various types of fuzzy numbers utilized 

in this study. Four types of fuzzy numbers were employed to model the 

output variable within the fuzzy inference system, as depicted in Figure 6. 

The triangular fuzzy number (Figure 6a) is straightforward and intuitive, 

typically used in early model development and suitable when uncertainty 

is centered around a peak value, exhibiting symmetric or asymmetric 

spreads. The trapezoidal fuzzy number (Figure 6b) represents range-based 

uncertainty, where multiple values carry equal likelihood, thus providing 

enhanced flexibility for cases in which the output may fall within a defined 

interval.  

The pentagonal fuzzy number (Figure 6c) offers higher resolution than the 

previous types and is effective when modeling more complex uncertainty 

distributions, particularly when the data indicates numerous transitions in 

membership levels. Finally, the hexagonal fuzzy number (Figure 6d) 

provides the greatest granularity and adaptability among all four, making 

it ideal for capturing highly nuanced or irregular uncertainty patterns in 

systems that exhibit complex or unpredictable behaviors. 
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(a)        (b) 

 
(c)       (d) 

Figure 6 Different types of output membership functions: (a) triangular 

fuzzy numbers, b) trapezoidal fuzzy numbers, c) pentagonal fuzzy numbers, and 

d) hexagonal fuzzy numbers. 

 

 3.1.3 Fuzzy Rules 

The fuzzy inference approach of the proposed system is of the Mandani 

type. The relationships among spare part lifetime (x1), lead time (x2), and 

maximum quantity (y) are described by the following rules: 

 
R1: IF x1 is low AND x2 is low THEN y is medium ELSE 

R2: IF x1 is low AND x2 is medium THEN y is high ELSE 

R3: IF x1 is low AND x2 is high THEN y is high ELSE 

R4: IF x1 is medium AND x2 is low THEN y is medium ELSE 

R5: IF x1 is medium AND x2 is medium THEN y is medium ELSE 

R6: IF x1 is medium AND x2 is high THEN y is high ELSE 

R7: IF x1 is high AND x2 is low THEN y is low ELSE 

R8: IF x1 is high AND x2 is medium THEN y is low ELSE 

R9: IF x1 is high AND x2 is high THEN y is medium 
 

3.2 Numerical Experiment  
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A case study examining historical inventory data over 36 months of refiner 

segments was conducted to manage spare part inventory using the min-

max inventory methodology. A comprehensive cost analysis was 

performed utilizing a Monte Carlo simulation, a statistical technique 

designed to model and analyze the behavior of complex systems and 

processes. This method encompasses the generation of numerous random 

samples or scenarios to explore a range of possible outcomes and to 

estimate the probabilities linked to various results. As part of this process, 

a probability distribution was assigned to each input variable, including 

demand, spare part lifetime, and lead time, to reflect their associated 

uncertainties. Following this, thorough analyses of the input data 

distributions were performed, and hypotheses regarding the probability 

distributions were evaluated using the chi-square goodness-of-fit test. The 

results of the input data fitting distributions are summarized as follows. 

The annual demand follows a binomial distribution, expressed as b(1.00, 

0.67). The spare part lifetime is characterized by a uniform distribution, 

denoted as U(31,64). In addition, the lead time conforms to a normal 

distribution, represented as 𝑁(4.089,1.765). 

Next, input parameters such as demand, spare part lifetime, and lead times 

were randomly generated using Minitab statistical software, corresponding 

with their specified distributions over 30 runs. The total cost of inventory 

management, encompassing ordering, holding, and stock costs, was 

calculated for each run. A 95% confidence interval analysis for the mean 

total inventory management cost was then conducted using statistical 

software. Figure 7 illustrates the interval plot of total inventory 

management costs by inventory control policy, comparing non-fuzzy and 

fuzzy inventory control using triangular, trapezoidal, pentagonal, and 

hexagonal fuzzy numbers. The results show that the total inventory 

management cost under the fuzzy inventory control policy is significantly 

lower than that of the non-fuzzy policy. However, no significant difference 

exists among the various fuzzy numbers. 
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Figure 7: Interval plot of total inventory management cost by inventory control 

policy. 

 

This study highlights the advantages of incorporating fuzzy logic control 

into spare part inventory management, demonstrating its effectiveness 

compared to traditional methods such as the min-max inventory approach. 

One significant finding of our research is that uncertainties related to spare 

part lifetime and lead time play a critical role in determining maximum 

inventory levels within the fuzzy logic framework. The results indicate that 

fuzzy control outperforms non-fuzzy control systems, primarily due to its 

ability to minimize overall inventory management costs. In a spare part 

inventory system designed with fuzzy logic, the maximum inventory level 

can be adjusted based on both the health status of machines and the 

unpredictability of lead times. This adaptability facilitates a more efficient 

inventory management strategy, helping to maintain optimal inventory 

levels and prevent shortages. Our findings are consistent with these 

conclusions, particularly in managing uncertainties, even though our 

research expands the application by integrating machine health into the 

model. In addition, Aengchuan and Phruksaphanrat [8] demonstrated the 

advantages of fuzzy control in the wood-based furniture industry, 

reporting lower costs compared to conventional lot-sizing. Their domain is 

similar to our MDF manufacturing context, which reinforces the external 
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validity of our findings.  

 

However, unlike their approach, we tested a broader set of fuzzy numbers, 

including pentagonal and hexagonal forms, providing additional flexibility 

in representing uncertainty. Despite this, the results from these different 

forms of fuzzy representation showed minimal differences. This 

consistency can be attributed to several key factors. First, each type of fuzzy 

number is structurally designed to handle uncertainty, suggesting that 

switching between these forms generally yields insignificant deviations in 

results. This outcome may be influenced by the characteristics of the case 

study problem, where the input variables, specifically lifetime and lead 

times, do not exhibit extreme fluctuations. Consequently, no particular type 

of fuzzy number demonstrates a significant advantage over others in this 

context. Second, when the underlying data distribution is uniform across 

the various fuzzy representations, using different types of fuzzy numbers 

is likely to result in similar outcomes, provided they are applied within the 

same analytical framework. Finally, the adaptability of fuzzy numbers 

plays a crucial role here; changes in representation from triangular to 

trapezoidal fuzzy numbers typically produce only marginal changes in 

calculations, leading to slight fluctuations in final outcomes. This inherent 

flexibility is fundamental to the reliability of fuzzy number methodologies 

in managing uncertain data. 

 

Therefore, the minor differences among fuzzy numbers in our results align 

with the findings of Chakraborty et al. [14], who noted that hexagonal fuzzy 

numbers offer more granularity without significantly affecting overall 

output in stable systems. In our case, the limited variability in the input 

data distributions (e.g., uniform lifetime and normally distributed lead 

time) likely contributed to the minimal impact of fuzzy number selection. 

From a practical standpoint, this implies that decision-makers may choose 

simpler fuzzy forms, such as triangular or trapezoidal numbers, without 

compromising accuracy, particularly in environments with moderate data 

variability. By contrast, industries with more volatile systems might benefit 

from more complex shapes, such as hexagonal fuzzy numbers, for 

enhanced precision. 
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7. CONCLUSION 
 

This study demonstrated the potential of integrating fuzzy logic control 

into spare part inventory management, specifically for a wood substitute 

manufacturing company. By addressing uncertainties related to machine 

health status and lead times, the proposed fuzzy inventory system exhibits 

significant advantages over traditional methods such as the min-max 

inventory approach. Incorporating various fuzzy numbers (triangular, 

trapezoidal, pentagonal, and hexagonal) into the model provides a more 

adaptive strategy for dealing with uncertainties, resulting in reduced 

inventory management costs. 

 

Although other fuzzy numbers showed improvements over non-fuzzy 

approaches, our study found that the differences between them were not 

statistically significant, suggesting that the choice of fuzzy numbers may be 

tailored based on specific application needs. 

 

Overall, this research highlights the effectiveness of using fuzzy logic 

control to manage spare part inventories in industrial settings, offering a 

practical and robust solution for reducing uncertainties and enhancing 

decision-making processes. This approach equips industrial practitioners 

with valuable tools to achieve cost-efficiency while streamlining supply 

chains, ultimately leading to improved operational reliability and reduced 

downtime. The findings pave the way for future research into the broader 

applications of fuzzy logic in inventory and supply chain management. 
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