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ABSTRACT: Effective management of spare parts inventory is essential for
maintaining uninterrupted industrial operations. Traditional systems often
struggle to adapt to the dynamic uncertainties of machine health and lead
times, which can result in inadequate inventory levels and increased
downtime. This research introduces a novel integration of fuzzy logic control
to improve inventory management by addressing these uncertainties. The
study focuses on spare part management in a wood substitute manufacturing
case involving the refiner process, utilizing a min-max inventory strategy in
conjunction with a fuzzy inference system that evaluates machine health and
lead times. Various fuzzy numbers, including triangular, trapezoidal,
pentagonal, and hexagonal, are employed to model these uncertainties,
leading to reduced holding and stock costs compared to conventional
approaches. The results show that the total cost under the fuzzy inventory
control policy is approximately three times lower and substantially less than
that of the non-fuzzy policy, as confirmed by 95% confidence intervals that are
clearly distinct. However, the analysis reveals no significant difference among
the fuzzy numbers, indicating flexibility in selection based on specific
application needs. Overall, this work underscores the potential of fuzzy logic
control to optimize spare part inventory management in industrial contexts.
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1.0 INTRODUCTION

Efficient management of spare parts inventory is critical for ensuring
uninterrupted operations in various industrial environments. Traditional
inventory management systems often find it challenging to respond to the
dynamic and uncertain nature of machine health status and lead times,
resulting in suboptimal inventory levels and increased downtime. To
address these challenges, the integration of fuzzy logic control presents a
promising strategy to enhance spare part inventory management by
incorporating the inherent uncertainty and imprecision associated with
machine health status and lead times. Machine health status is a critical
factor influencing the demand for spare parts. As machines operate, their
health status can deteriorate over time due to factors such as wear and tear,
aging components, or environmental conditions. A decline in machine
health can heighten the likelihood of component failures or malfunctions,
leading to increased demand for spare parts necessary for repairs and
maintenance activities.

This research focuses on a case study of a manufacturing company
producing medium-density fiberboard (MDF) in Thailand. The continuous
production process of MDF is illustrated in Figure 1.
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Figure 1: Operation process chart of medium-density fiberboard.

Our study focused on the pulping process, where the refiner plays a crucial
role. The segments of the refiner, as depicted in Figure 2, are spare parts.
Currently, inventory management follows the min-max inventory policy.
The minimum inventory level (Min) serves as a reorder point, triggered
when the total inventory, comprising on-hand and in-transit stock, falls
below the Min threshold. At this point, the order quantity (Q) is adjusted to
reach the maximum inventory level (Max). The Q value can be determined
either as the difference between Max and Min or calculated using the
economic order quantity formula. Consequently, the maximum inventory
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level (Max) is the sum of the minimum level (Min) and the order quantity
(Q). Figure 3 illustrates the inventory control process for these spare parts.
The primary drawback of the current inventory management system is its
failure to account for the stochastic nature of machine conditions and spare
part lead times. This limitation can result in overstocking or understocking,
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Figure 3: Refiner segments inventory level by month.

The objective of this research is to propose a spare parts inventory system
using fuzzy logic control to address the uncertainties associated with
machine health and spare part lead times. The existing approach for
determining order quantity based on a fixed maximum may not be ideal.
By modeling the uncertainties in machine health indicators and lead time
forecasts, the system seeks to optimize inventory levels. Integrating fuzzy
logic assessments into the replenishment decision-making process can
enhance inventory management efficiency, improve resilience to
uncertainty, and reduce overall inventory costs.

A fuzzy inference system is employed to establish relationships between
input and output variables within a system. In this context, precise inputs
are transformed into fuzzy inputs through a fuzzification interface.
Following fuzzification, a rule base is created. The combination of the rule
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base and database forms the knowledge base. Defuzzification is then
applied to convert the fuzzy values back into actual output values. Fuzzy
inference systems are utilized in various fields, including management and
manufacturing contexts [1-5]. Fuzzy control has emerged as a promising
method for addressing the complexities inherent in probabilistic inventory
models, particularly when dealing with uncertainties. Hsieh [6] proposed a
fuzzy inventory model tailored for the computer mouse industry, which
accounts for uncertainties in demand and lead time while focusing on order
quantities, reorder points, and safety stock. The study’s results indicate that
utilizing trapezoidal fuzzy numbers can minimize total annual inventory
and safety stock costs. Similarly, De and Rawat [7] developed exponential
fuzzy numbers to address uncertainties related to demand and lead time,
concentrating on order quantities and safety stock. Their findings
demonstrate that using exponential fuzzy numbers facilitates sensitivity
analysis of optimized parameters in response to variations in service levels.
Aengchuan and Phruksaphanrat [8] applied fuzzy logic to determine order
quantities and reorder points in the wood-based furniture industry,
considering uncertainties in both demand and supply. Their results reveal
that the proposed fuzzy inventory system (FIS) can achieve lower costs
compared to traditional

FIS lot-sizing methods. Uthayakumar and Karuppasamy [9] developed a
fuzzy inventory model for lot sizing in the healthcare sector by
incorporating demand variables, storage costs, order costs, and order
quantities. Their research suggests that using triangular fuzzy numbers
results in a total cost slightly higher than that of a crisp model. Jamegh et
al. [10] created a fuzzy logic system for determining safety stocks in the
dairy processing industry while considering factors such as demand, raw
material availability, end-of-stock, and safety stock. Their findings indicate
that implementing trapezoidal fuzzy numbers positively affects the
reduction of safety stock levels. However, in terms of fuzzy inventory,
researchers are increasingly interested not only in inventory management
parameters but also in related issues. These include active steering control
systems [11], hard turning [12], machine deterioration [13, 14], carbon
emissions [15-17], defective items [18], financial issues [19], and
transportation scheduling [20], among others.
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Based on the aforementioned literature, although significant advancements
have clearly been made in inventory management within fuzzy
environments, the application to spare part inventory systems, particularly
those incorporating condition-based maintenance strategies, remains
largely unexamined. This study addresses this research gap by proposing
a novel inventory control framework that utilizes fuzzy logic modeling
alongside machine health monitoring. By using machine health status as a
determinant of spare part demand and accounting for variability in order
lead times, the proposed system introduces a more responsive and adaptive
inventory strategy.

This research contributes to the development of robust and adaptive
inventory systems capable of tackling the challenges posed by uncertainties
in machine health status and order lead times. Unlike traditional models
that operate under deterministic assumptions, our approach employs fuzzy
logic control to manage and model the ambiguity common in real-world
industrial operations, thus enhancing decision-making under uncertainty.
This integration not only strengthens the connection between predictive
maintenance and inventory planning but also promotes greater operational
resilience and cost efficiency. The framework adds to the growing body of
research in FISs by providing a practical and empirically validated model
adaptable to continuous production environments. Through a real-world
case study involving the MDF industry, this study aims to demonstrate
both the theoretical contributions and practical implications of this
enhanced fuzzy logic-based inventory system for industrial practitioners
and researchers alike.

2. RESEARCH METHOD

This study introduces a novel fuzzy logic-based inventory management
framework aimed at addressing uncertainties in spare part lifetime and
lead time, particularly in continuous manufacturing environments. In
contrast to traditional systems that depend on fixed reorder points and
simplistic assumptions about uncertainty, this approach integrates the
entire modeling, inference, and evaluation process. The research begins
with the formulation of real-world problems and advances through fuzzy
system development, rule-based inference using a Mamdani fuzzy
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inference system, and uncertainty modeling via Monte Carlo simulation,
culminating in a cost-based performance evaluation. Major features include
the utilization of machine health indicators and stochastic lead times as
fuzzy input variables, representing a condition-based inventory strategy
that is seldom considered in conventional models. In addition, the study
employs four types of fuzzy numbers, namely, triangular, trapezoidal,
pentagonal, and hexagonal, to represent uncertainty in the output variable
flexibly, allowing for a detailed comparison of their performance. By
integrating these elements, the proposed framework provides a
comprehensive and adaptable decision-support system that enhances
inventory control under uncertainty, ultimately contributing to more
resilient and cost-efficient industrial operations.

This section outlines the methodology used for developing, testing, and
evaluating the FIS for managing spare part inventory. Figure 4 illustrates
the research framework. The first step involved identifying the problem to
be addressed. A case study of the manufacturing process at a company
producing MDF in Thailand was conducted to define the objectives, scope,
and various requirements. Next, the FIS was developed, followed by a
numerical experiment for evaluation. Finally, the results are summarized
and discussed.
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Figure 4: Research method.

2.1 Development of the FIS

The development of the FIS consisted of three core components: fuzzy
inputs, fuzzy outputs, and fuzzy rules. The system included two fuzzy
input variables: spare part lifetime and order lead time, both represented
by triangular membership functions derived from historical data and
observations. A single fuzzy output variable, the maximum quantity, was
defined using various types of fuzzy numbers, including triangular,
trapezoidal, pentagonal, and hexagonal.

A fuzzy set is characterized by a membership function that assigns values
ranging from [0, 1] to elements within a domain, space, or universe of
discourse X. In this context, a fuzzy set 4 in the universe X is represented
by a set of pairs as follows:
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A= {x,u (x);x € X} (1)

where py: X €- [0,1] is a mapping known as the degree of membership
function of the fuzzy set A and p4(x) is known as the membership value of
x € X in the fuzzy set A. These membership grades are typically expressed
as real numbers within the range of [0,1]. A fuzzy number 4, defined as a
fuzzy set on the real line R, must satisfy the following conditions:

i.  pz(xg) is piecewise continuous.
ii. There exists at least one x € X with puz(x,) =1.
iii. A must be normal and convex.

In this study, four fuzzy sets are investigated; 1) triangular fuzzy set, 2)
trapezoidal fuzzy set, 3) pentagonal fuzzy set, and 4) hexagonal fuzzy set.
Further details on these fuzzy sets can be found in Chakraborty et al. [14]
and Pathinathan and Ponnivalavan [21]. Subsequently, a fuzzy rule base
consisting of nine rules was constructed using the Mamdani fuzzy
inference approach. These rules establish relationships between input
levels (low, medium, and high) and output levels (low, medium, and high).
The max-min compositional operation in fuzzy reasoning produces fuzzy
outputs. These outputs can be expressed as

poy) = (.UD1 (x) N .uLTl(xZ)) U--(.“Dn(xl) n .uLTn(xZ)) 2)

where N signifies the minimum operation and U signifies the maximum
operation. D;, LT;, and Qi are fuzzy subsets defined by the corresponding
membership functions. Afterward, to translate the fuzzy outputs into
precise values, the center-of-gravity method was applied for
defuzzification. This method is used to transform the fuzzy inference
output into a non-fuzzy value, as expressed by

A 7162);
= Y ®)

2.2 Numerical Experiment Design

A Monte Carlo simulation was performed to model the range of
outcomes while considering uncertainties in demand, lifetime, and lead
time based on 36 months of historical inventory data from the refiner
segment. A statistical analysis was conducted to assign appropriate
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probability distributions to the input variables; the analysis validated
through a chi-square test. Utilizing random parameters based on their
respective distributions, the simulation was performed for 30 runs.
Inventory costs were analyzed with respect to ordering costs, which include
expenses related to placing and receiving orders, and holding costs, which
encompass storage expenses and opportunity costs, with an annual interest
rate of 1.5%. A cost analysis was conducted by varying parameters such as
spare part lifetime and lead time, calculating inventory costs with different
fuzzy numbers, and comparing average monthly inventory costs. The
assumptions, notations, and equations for the analysis are provided as
follows. Assumption:

i. The demand for refiner segments of the defibrator is uncertain

and depends on the machine’s health status.
ii. Order lead time is unpredictable but can be estimated using
available data and expert knowledge.

iii. Shortages are not allowed.
Notation:

O: Ordering cost per order

K:  Number of orders per year

H: Holding cost per unit

Qn: Holding quantity per year

C:  Unit price

I: Interest rate

The inventory cost, including ordering cost, holding cost, spare part cost,
and total cost are expressed via the following Equations (4)—(6),

respectively.
Ordering cost = KO 4)
Holding cost = (H+IC)Qn (5)
Total cost = KO+ (H+IC)Qn (6)

Finally, the overall inventory management costs that include ordering,
holding, and stock costs were computed. These results were further
assessed through a 95% confidence interval analysis to compare the
effectiveness of various inventory control policies.

3. RESULTS AND DISCUSSION
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3.1FIS Model

The proposed FIS model consists of three components: fuzzy inputs, fuzzy
outputs, and fuzzy rules. The two fuzzy input variables are spare part
lifetime and order lead time, and the output variable is the maximum
quantity. These variables are expressed using linguistic terms.

3.1.1 Fuzzy Inputs

The fuzzy inputs include spare part lifetime and order lead time, described
by the membership functions y; and u;r, respectively. Fuzzy lifetime and
lead time were established based on observations and historical data
analysis. Each is categorized into three linguistic values of low, medium,
and high, as illustrated in Figure 5. The input parameters were shaped by a
normal distribution that that captures the uncertainty concerning spare part
lifetime and lead time. The universe of discourse for the spare part lifetime
is defined over the interval [min(L), max(L)], where min(L) and max(L)
denote the minimum and maximum observed lifetimes, respectively.
Membership functions for the lifetime are defined by the parameters
(min(L), L — 30y, L, L + 30;, max(L)), as shown in Figure 5(a). Likewise, the
universe of discourse for the lead time input space is defined within the
interval [min(LT), max(LT)], where min(LT) and max(LT) denote the
minimum and maximum observed lead times, respectively. Membership
functions for lead time are determined by these parameters (min(LT), LT —
30y, LT, LT + 30,7, max(LT)), as shown in Figure 5(b).

1.5 L5
=
=y g
£ 1o g 10
= g ~
= D
=305 2205
Z2 ‘_\ = 2
o ]
5 o = 0.0
5 min(l) I-3q, I D+30.  max(L) g min(LT) IT -3 P LT+ 30y max(LT
" .
Spare Part Lifetime (x,) Lead time (X,)
(a) (b)

Figure 5: Input membership functions: (a) spare part lifetime MFs and b) lead

time MFs.
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3.1.2 Fuzzy Outputs

Traditional min-max inventory models rely on a fixed maximum quantity
value. However, in practice, uncertainties in demand and lead time render
fixed values unsuitable, particularly given the irregularities in demand
patterns. To address this, a fuzzy output is proposed, namely, the fuzzy
maximum quantity, which is defined by membership functions denoted as
Uo - This fuzzy maximum quantity is categorized into three linguistic
values: low, medium, and high. The range for the maximum quantity
output is established within the interval [min(Q), max(Q)], where max(Q)
signifies the highest observed quantity in current practices, whereas min(Q)
targets minimizing the total inventory cost. In addition, we aim to illustrate
various types of fuzzy numbers to provide decision-makers with a plethora
of options.

Therefore, classical triangular and trapezoidal fuzzy numbers were used in
this research, alongside pentagonal and hexagonal fuzzy numbers, which
offer additional capacity to convey uncertain knowledge and formulate
responses. Figure 6 illustrates the various types of fuzzy numbers utilized
in this study. Four types of fuzzy numbers were employed to model the
output variable within the fuzzy inference system, as depicted in Figure 6.
The triangular fuzzy number (Figure 6a) is straightforward and intuitive,
typically used in early model development and suitable when uncertainty
is centered around a peak value, exhibiting symmetric or asymmetric
spreads. The trapezoidal fuzzy number (Figure 6b) represents range-based
uncertainty, where multiple values carry equal likelihood, thus providing
enhanced flexibility for cases in which the output may fall within a defined
interval.

The pentagonal fuzzy number (Figure 6c) offers higher resolution than the
previous types and is effective when modeling more complex uncertainty
distributions, particularly when the data indicates numerous transitions in
membership levels. Finally, the hexagonal fuzzy number (Figure 6d)
provides the greatest granularity and adaptability among all four, making
it ideal for capturing highly nuanced or irregular uncertainty patterns in
systems that exhibit complex or unpredictable behaviors.

ISSN: 1985-3157 e-ISSN: 2289-8107 Vol. 19 No.3 September — December 2025 27



Enhanced Fuzzy Logic-Based Approach to Inventory Management
Considering Spare Part Lifetime and Lead Time Uncertainty

1.50 1.50
= =
g 3
Z 100 Y 1.00
B -]
E] £
= g
2 £
S 050 = 050
= Z
s 5
; 2
2 oo 2 000
T N
S L E S E S S S RO L S I FC O U
Maximum Quantity {v) Marcimyum Cruantity (v)
(a) (b)
150 1.50
2 —
= 1.00 Z 1o
: =
£ %
E %
& 050 5 050
k= =
3 =
5 -
A g
= oo 7 o0
SRR SIS RS N L T RS S P ! = S I S ST SR T RN S J
FFEF S FEFESY o o7 o7 (\‘5?' NN RN
Maximum Quantity () Maximum CQuantity (v)
(c) (d)

Figure 6 Different types of output membership functions: (a) triangular
fuzzy numbers, b) trapezoidal fuzzy numbers, c) pentagonal fuzzy numbers, and

d) hexagonal fuzzy numbers.

3.1.3 Fuzzy Rules
The fuzzy inference approach of the proposed system is of the Mandani

type. The

relationships among spare part lifetime (x1), lead time (xz), and

maximum quantity (y) are described by the following rules:

R1:
R2:
R3:
R4:
R5:
R6:
R7:
R8:
R9:

IF x1is low AND x: is low THEN vy is medium ELSE

IF x1is low AND x: is medium THEN y is high ELSE

IF x11is low AND x2 is high THEN y is high ELSE

IF x1is medium AND x: is low THEN y is medium ELSE

IF x1is medium AND x: is medium THEN y is medium ELSE
IF x1is medium AND x: is high THEN y is high ELSE

IF x1 is high AND x2 is low THEN y is low ELSE

IF x1 is high AND x2 is medium THEN y is low ELSE

IF x1is high AND x2 is high THEN y is medium

3.2 Numerical Experiment
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A case study examining historical inventory data over 36 months of refiner
segments was conducted to manage spare part inventory using the min-
max inventory methodology. A comprehensive cost analysis was
performed utilizing a Monte Carlo simulation, a statistical technique
designed to model and analyze the behavior of complex systems and
processes. This method encompasses the generation of numerous random
samples or scenarios to explore a range of possible outcomes and to
estimate the probabilities linked to various results. As part of this process,
a probability distribution was assigned to each input variable, including
demand, spare part lifetime, and lead time, to reflect their associated
uncertainties. Following this, thorough analyses of the input data
distributions were performed, and hypotheses regarding the probability
distributions were evaluated using the chi-square goodness-of-fit test. The
results of the input data fitting distributions are summarized as follows.
The annual demand follows a binomial distribution, expressed as b(1.00,
0.67). The spare part lifetime is characterized by a uniform distribution,
denoted as U(31,64). In addition, the lead time conforms to a normal
distribution, represented as N(4.089,1.765).

Next, input parameters such as demand, spare part lifetime, and lead times
were randomly generated using Minitab statistical software, corresponding
with their specified distributions over 30 runs. The total cost of inventory
management, encompassing ordering, holding, and stock costs, was
calculated for each run. A 95% confidence interval analysis for the mean
total inventory management cost was then conducted using statistical
software. Figure 7 illustrates the interval plot of total inventory
management costs by inventory control policy, comparing non-fuzzy and
fuzzy inventory control using triangular, trapezoidal, pentagonal, and
hexagonal fuzzy numbers. The results show that the total inventory
management cost under the fuzzy inventory control policy is significantly
lower than that of the non-fuzzy policy. However, no significant difference
exists among the various fuzzy numbers.
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Figure 7: Interval plot of total inventory management cost by inventory control
policy.

This study highlights the advantages of incorporating fuzzy logic control
into spare part inventory management, demonstrating its effectiveness
compared to traditional methods such as the min-max inventory approach.
One significant finding of our research is that uncertainties related to spare
part lifetime and lead time play a critical role in determining maximum
inventory levels within the fuzzy logic framework. The results indicate that
fuzzy control outperforms non-fuzzy control systems, primarily due to its
ability to minimize overall inventory management costs. In a spare part
inventory system designed with fuzzy logic, the maximum inventory level
can be adjusted based on both the health status of machines and the
unpredictability of lead times. This adaptability facilitates a more efficient
inventory management strategy, helping to maintain optimal inventory
levels and prevent shortages. Our findings are consistent with these
conclusions, particularly in managing uncertainties, even though our
research expands the application by integrating machine health into the
model. In addition, Aengchuan and Phruksaphanrat [8] demonstrated the
advantages of fuzzy control in the wood-based furniture industry,
reporting lower costs compared to conventional lot-sizing. Their domain is
similar to our MDF manufacturing context, which reinforces the external
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validity of our findings.

However, unlike their approach, we tested a broader set of fuzzy numbers,
including pentagonal and hexagonal forms, providing additional flexibility
in representing uncertainty. Despite this, the results from these different
forms of fuzzy representation showed minimal differences. This
consistency can be attributed to several key factors. First, each type of fuzzy
number is structurally designed to handle uncertainty, suggesting that
switching between these forms generally yields insignificant deviations in
results. This outcome may be influenced by the characteristics of the case
study problem, where the input variables, specifically lifetime and lead
times, do not exhibit extreme fluctuations. Consequently, no particular type
of fuzzy number demonstrates a significant advantage over others in this
context. Second, when the underlying data distribution is uniform across
the various fuzzy representations, using different types of fuzzy numbers
is likely to result in similar outcomes, provided they are applied within the
same analytical framework. Finally, the adaptability of fuzzy numbers
plays a crucial role here; changes in representation from triangular to
trapezoidal fuzzy numbers typically produce only marginal changes in
calculations, leading to slight fluctuations in final outcomes. This inherent
flexibility is fundamental to the reliability of fuzzy number methodologies
in managing uncertain data.

Therefore, the minor differences among fuzzy numbers in our results align
with the findings of Chakraborty et al. [14], who noted that hexagonal fuzzy
numbers offer more granularity without significantly affecting overall
output in stable systems. In our case, the limited variability in the input
data distributions (e.g., uniform lifetime and normally distributed lead
time) likely contributed to the minimal impact of fuzzy number selection.
From a practical standpoint, this implies that decision-makers may choose
simpler fuzzy forms, such as triangular or trapezoidal numbers, without
compromising accuracy, particularly in environments with moderate data
variability. By contrast, industries with more volatile systems might benefit
from more complex shapes, such as hexagonal fuzzy numbers, for
enhanced precision.
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7. CONCLUSION

This study demonstrated the potential of integrating fuzzy logic control
into spare part inventory management, specifically for a wood substitute
manufacturing company. By addressing uncertainties related to machine
health status and lead times, the proposed fuzzy inventory system exhibits
significant advantages over traditional methods such as the min-max
inventory approach. Incorporating various fuzzy numbers (triangular,
trapezoidal, pentagonal, and hexagonal) into the model provides a more
adaptive strategy for dealing with uncertainties, resulting in reduced
inventory management costs.

Although other fuzzy numbers showed improvements over non-fuzzy
approaches, our study found that the differences between them were not
statistically significant, suggesting that the choice of fuzzy numbers may be
tailored based on specific application needs.

Overall, this research highlights the effectiveness of using fuzzy logic
control to manage spare part inventories in industrial settings, offering a
practical and robust solution for reducing uncertainties and enhancing
decision-making processes. This approach equips industrial practitioners
with valuable tools to achieve cost-efficiency while streamlining supply
chains, ultimately leading to improved operational reliability and reduced
downtime. The findings pave the way for future research into the broader
applications of fuzzy logic in inventory and supply chain management.
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