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ABSTRACT: Middle-Mile Delivery (MMD) is perceived to carry less 

importance in supply chain management and has the least potential for 

improvement, prompting many companies to skip this step in logistics. 

Although MMD is studied as part of the Vehicle Routing Problem (VRP), it 

receives less attention than last-mile delivery. Nevertheless, MMD is typically 

more predictable, presenting greater opportunities for enhancements. An 

optimised middle-mile distribution network can reduce transportation costs 

and delivery times. The main challenges of MMD include route distance, the 

locations of distribution centres, and delivery duration. Routing is an essential 

element of logistics, significantly contributing to economic growth. Inefficient 

routing may result in elevated expenses, especially for courier and logistics 

companies. Nodes, also known as distribution centres, are critical components 

in the distribution system. The initiation or termination of these nodes is 

frequently restricted by corporate constraints, rendering such modifications 

challenging. Consequently, optimisation initiatives must prioritise the 

selection of nodes according to their relevance to the company's 
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comprehensive delivery process. This study presents a hybrid approach for 

the Close-Open Mixed Vehicle Routing Problem (COMVRP), which addresses 

both open and closed routes while integrating Multi-Criteria Decision Making 

(MCDM). The objective is to reduce the overall delivery distance. We propose 

a refined Genetic Algorithm (GA) that integrates with the Analytical 

Hierarchical Process (AHP) and the Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS). In managerial decision-making, the 

AHP-TOPSIS method is used to improve an initial COMVRP generated by the 

nearest neighbour algorithm. The AHP technique focuses on criteria weights, 

whereas TOPSIS emphasises delivery centres’ performance as the priority 

node. This solution set achieves ideal GA performance, displaying minimal 

route distances with external vehicle deployment. The calculation results also 

showed that the proposed model reduced the total route distance by 4.86%, 

which exceeded the standard COMVRP model with 28.03% less than the 

current postal delivery system. 

 
KEYWORDS: Middle-Mile Delivery; Close-Open Mixed Vehicle Routing 

Problem; Multi-Criteria Decision Making, Analytical Hierarchy Process; Technique 

for Order Preference by Similarity to Ideal Solution; Postal Delivery. 
 
 

1.0 INTRODUCTION 
 

In supply chain management, middle-mile delivery (MMD) is 
frequently regarded as a less contributing step than first-mile and last-
mile deliveries. It has the least room for optimisation, resulting in many 
companies skipping the middle-mile logistics distribution step. The 
combination of the first- and middle-miles within the role of data 
source and sustainability impact on digital transformation has been 
less thoroughly examined, implying that the middle-mile involves 
optimisation concerns [1]. Moreover, MMD is an internal shipping step 
in the supply chain management that supports final shipping 
effectiveness. More transporters and shipping routes are needed to 
fulfil this task, making MMD inefficient, time-consuming and 
challenging. 
 
Concerns regarding MMD have been extensively studied in Vehicle 
Routing Problem (VRP) but are less intense than last-mile delivery. 
Middle-mile flows are typically more steady and predictable, 
providing more improvement opportunities. It aligns with previous 
evidence whereby an optimal middle-mile distribution network 
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reduces transportation costs, delivery time, and carbon emissions [2]. 
The main challenges of MMD are route mileage, delivery centre 
locations, and delivery time. Many logistics companies have 
implemented VRP and all variants to optimise delivery through several 
algorithms. Past research proposed a model of logistics distribution 
optimisation method simulated by the genetic testing algorithm [3]. 
Furthermore, the involvement of human decision is also needed to 
overcome VRP with realistic solutions. During the intermediate phase 
of the logistics process, products are distributed to e-commerce order 
fulfilment centres where essential activities, such as order sortation, 
picking, and packing, are conducted. The issue faced by MMD route 
optimisation is usually indicated by the selection of nodes in the 
distribution network, with priorities on route and time efficiency. 
 
Pos Indonesia is a state-owned enterprise that plays a crucial role in 
providing postal services across the provinces of Indonesia [4], 
including both universal and specialised government services. The 
rapid growth of e-commerce and advancements in information 
technology have significantly impacted the postal industry, creating 
competition from courier and express delivery companies as well as 
online transportation providers. To remain competitive in this evolving 
market, Pos Indonesia must optimise its logistics and delivery 
networks by improving route selection and fleet efficiency and 
reducing transportation costs. Recent evidence showed that optimising 
distribution systems by reducing storage facilities and utilising 
decision support frameworks can significantly enhance last-mile 
delivery efficiency and reduce costs [5]. By incorporating data 
analytics, network optimisation, and real-time decision-making, Pos 
Indonesia can better meet the increasing demand for fast and reliable 
delivery, driven by the rise of e-commerce [6] and customer 
expectations for services like Same-Day Delivery [7]. 

 
The Vehicle Routing Problem (VRP) was introduced by Dantzig [8] and 
focuses on optimising multiple delivery routes at minimal cost while 
adhering to constraints like vehicle capacity and visiting each customer 
once. An alternative to such issue is the Open Vehicle Routing Problem 
(OVRP) whereby vehicles do not return to the depot after completing 
deliveries, making it useful for situations where internal fleets are 
insufficient and necessitate the use of external vehicles [9]. Recent 
research on OVRP has expanded through the adaptations of Green 
OVRP [10] and multi-objective variants [11]. Advances in algorithms, 
including Tabu Search and Ant Colony Optimisation [12], have been 
applied to solve complex OVRP challenges and explore its applications 
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in other areas, such as crowd shipping, ride-sharing, and bus routing 
[13-14]. The complexity of VRP and its variants, including the Close-
Open Mixed Vehicle Routing Problem (COMVRP), has led to the use 
of metaheuristic algorithms like Genetic Algorithms, which are proven 
effective in optimising routes for electric vehicles and reducing total 
travel distance [12-13]. These approaches offer practical solutions to 
logistics companies for efficient, cost-effective fleet management. 
 
This study explored the complexities of postal delivery optimisation as 
constrained by business rules using a Close-Open Mixed Vehicle 
Routing Problem (COMVRP) model integrated with Multi-Criteria 
Decision Making (MCDM) techniques, specifically AHP and TOPSIS. 
The solution was based on delivery history data from the Postal 
Processing Centre (PPC) in Bandung 40400 and a Monte Carlo 
Simulation (MCS) was used to predict optimal delivery routes. By 
analysing delivery patterns and prioritising nodes through AHP and 
TOPSIS, this study ranked delivery routes and simulated future 
patterns, thus enhancing delivery efficiency. The integration of external 
vehicles into the COMVRP model, along with precise optimisation 
techniques, supports future delivery patterns and allows for improved 
delivery performance based on historical data, addressing the real-
world challenges of postal operations. 
 

 

2.0  METHODOLOGY 
 

Although the MCDM technique could identify the optimal choices for 
the COMVRP model, the AHP and TOPSIS methods were also 
evaluated in consideration of the specific issues. Both AHP and TOPSIS 
were employed to address the numerical complexities encountered in 
this simulation. It involved the following processes, as illustrated in 
Figure 1. 
Step 1:  Integrate specialised insights from the operation manager. 
Step 2: Utilise AHP to conduct processing, which derives criteria from 

DC according to the weighting established by the AHP 
method. 

Step 3:  Implement the TOPSIS method to process the weight criterion 
results and produce a set of DC rankings priority based on the 
given information. 

Step 4:  Convert data into the format specified by MCS to rank DC. 
When contrasted with the route determination process in the 
PPC zoning system, the simulation outcomes will reveal the 



Journal of Advanced Manufacturing Technology (JAMT) 

 

ISSN: 1985-3157    e-ISSN: 2289-8107   Vol. 18   No. 3   September – December 2024   241 

DC ranking, which will then be utilised to establish DC 
priority. 

Step 5:  Findings from MCS in the DC ranking priority will serve as a 
preliminary solution for GA, aiming to enhance the 
optimisation performance of COMVRP to achieve the most 
effective PPC delivery. 
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Figure 1: A Proposed Method 

 
 

2.1  The Proposed Model 
 

COMVRP builds upon the conventional VRP by incorporating 
elements from both the Open and Closed VRP models. Although 
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similar to the traditional VRP, Open VRP distinguishes itself by 
allowing routes to conclude after all customers have been served, 
without the requirement for vehicles to return to the initial depot [17]. 
In this context, COMVRP involves a mix where some vehicles return to 
the initial depot, whereas in the traditional VRP, all vehicles must 
return to the depot. The mixed vehicle approach will be implemented 
according to this proposed model. Specifically, COMVRP incorporates 
the following constraints: 

i. Routes used by internal fleet vehicles must commence and 
conclude at the original point of PPC. 

ii. External fleet vehicle routes must commence at the initial PPC 
and conclude at the final DC. 

iii. Each DC is visited by only one vehicle. 
iv. Each route is assigned to only one vehicle. 
v. The cumulative demand from all DCs on a specific route should 

not exceed the vehicle’s capacity. 
The mathematical model for COMVRP [17], including the constraints 
and defined objective functions, is shown in Formula (1) to (9). Formula 
8 demonstrates an improvement aimed at enhancing the algorithm's 
performance, particularly in determining a more efficient distance by 
first identifying the critical nodes that must be traversed. Such 
identification is based on historical data and conducted using the AHP 
and TOPSIS methods. 
 
Objective Function: 

 

Min Z= ∑ Fk

k ∈K

∑ x0i
k

i ∈N

+ ∑ ∑ ∑ cijxij - ∑ ∑ ci0xi0
k

i ∈Nk ∈K2j ∈Ni ∈Nk ∈K

          (1) 

 
Constraints: 

 

∑ ∑ xij
k

i ∈V i ≠j

= 1, ∀ j ∈N                                       (2)

k ∈ K

 

 

∑ xij
k

i ∈ V i ≠j

- ∑ xji
k

i ∈ V i ≠j

= 0, ∀ j ∈V, ∀ k ∈K                           (3) 

 

∑ q
j

j ∈ R

 (∑ x0i
k

i ∈ V

) ≤ Maxcapacity, ∀ k ∈ K2                         (4) 
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∑ x0i
k

i ∈N

 ≤ 1, ∀ k ∈K                                           (5) 

 

∑ ∑ x0i
k

i ∈N

= Nu                                          (6)

k ∈ K1

 

 

xij
k ∈ {0,1} ∀ i, j ∈V, ∀ k ∈K, i ≠ j                                (7) 

 
The constraint from AHP-TOPSIS: 

 

∑ q
j

j ∈ R

 (∑ x0i
k

i ∈ V

) ≤ Maxcapacity, ∀ k ∈K2, R = DC priority                       

from AHP-TOPSIS                                  (8) 
 

Decision variables: 

xij
k = {

1
0

                                                            (9) 

 
The value is 1 if vehicle k serves j after serving i and 0 if otherwise. 
cij             = travel cost from DC i to DC j 

ci0            = travel cost from DC i to PPC 
Fk            = fixed cost for vehicle k 
K             = vehicle set K = {K1 ∪ K2} 
K1           = internal fleet set (vehicle owned by the company) 
K2           = external fleet set (external vehicle) 
MaxCap = vehicle maximum capacity 
Nu          = maximum number of internal fleet 
q

j
             = demand from DC j 

V             = set of nodes 

xij
k            = vehicle k serves for DC j after visiting DC i 

xi0
k            = vehicle k returns to PPC after visiting DC i 

x0i
k            = vehicle k serves for DC exactly after vehicle starts from PPC  

R             = DCs priority 

 
Formula (1) represents the objective function, which aims to minimise 
the total operating costs of the vehicles. These costs include both fixed 
costs, such as maintenance and transportation for the internal fleet, and 
variable costs related to using external vehicles. Constraint (2) ensures 
that each distribution centre (DC) is visited exactly once by a single 
vehicle. Constraint (3) requires each vehicle to leave DC immediately 
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after completing its service. Constraint (4) guarantees that the total 
demand served by a vehicle on any route does not exceed its capacity. 
Constraint (5) ensures that only one vehicle departs from the depot for 
each route. Constraint (6) restricts the number of internal fleet vehicles 
to not exceed the available quantity (Nu). Lastly, Constraint (7) defines 
a binary variable, i, for each vehicle k, where i is 1 if vehicle k visits point 
j after serving node i, and 0 if otherwise. Additionally, Constraint (8) is 
added to integrate route priorities for DCs based on the AHP-TOPSIS-
MCS simulation. Formula (9) specifies the decision variables. 
 

2.2  Case at Hand 
 

Pos Indonesia utilised a hub-and-spoke model for its distribution 
network, with the PPC Bandung 40400 serving as the hub and nearby 
post offices or DCs acting as the spokes, as illustrated in Figure 2. The 
shipping value chain at Pos Indonesia operates as follows: Post offices 
receive mail and packages from customers. At scheduled times, a 
vehicle collects and transports these items from the DC to the PPC. The 
PPC then conducts a sorting process before sending the items to the 
destination PPC. Various transportation modes, including trucks, 
trains, ships, and airplanes, are used for distribution. Upon arrival at 
the destination PPC, another sorting process takes place before the 
items are delivered to each DC and ultimately to the intended 
recipients. The PPC is tasked with the responsibilities of planning, 
organising, executing, and overseeing the policies related to the 
collection, processing, transportation, delivery, and reporting within 
its operational domain, aiming to ensure both efficiency and 
effectiveness. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Pos Indonesia Distribution Network Modified from Timperio [5] 
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This research gathered historical delivery data from the PPC's 
operational deliveries over three months. It included information on 
products/services, destination distribution centres (DCs), DC demand, 
shipment weight, vehicles used, routes taken, and shipment dates. In 
total, 19,850 records were collected. Table 1 presents the average 
monthly demand based on this data. 
 

Table 1: The demands of all DCs 
Delivery Centres September November December October Total 

Dc Asiaafrika 4040e 7150 36157 37398 32379 113084 
Dc Cikeruh 4040j 4251 14700 14814 15289 49054 
Dc Cikutra 4040f 4471 19578 24479 18849 67377 
Dc Cimahi 4040i 3904 15788 15272 15614 50578 
Dc Cipedes 4040c 4847 21378 19425 19352 65002 
Dc Dayeuhkolot 4040g 3520 12101 12439 14241 42301 
Dc Lembang 4040l 2141 6152 6434 5930 20657 
Dc Majalaya 4040m 2401 8654 9131 9494 29680 
Dc Padalarang 4040k 2033 10378 10194 8630 31235 
Dc Sekejati 4040a 6889 26392 24579 24903 82763 
Dc Situsaeur 4040d 4016 16262 16864 16168 53310 
Dc Soreang 4040h 4155 12967 13834 14549 45505 
Dc Ujungberung 4040b 4656 20543 18210 18348 61757 
Total Demand (Kg.) 54434 221050 223073 213746 712303 

 
Vehicle: PPC Bandung 40400 deployed six vehicles for postal 
deliveries. Detailed information about these vehicles is provided in 
Table 2. Additionally, the statistics indicate that the average speed of 
these vehicles was 30 km/h. 
 

Table 2: Distribution routes of PPC Bandung 40400 (source: P3M PPC 

Bandung 40400) 

Number of 
Route 

Route Flow 
Vehicle 

Capacity 
(ton) 

Route-1 
PPC to DC Situ Saeur, then to DC Asia Afrika, and 
finally returns to PPC. 

1.5 

Route-2 
PPC to DC Dayeuhkolot, then to DC Katapang, 
followed by DC Soreang, and finally returns to PPC. 

1.5 

Route-3 
PPC to DC Cikutra, then to DC Lembang, and 
return to PPC. 

1.5 

Route-4 
PPC to DC Cipedes, then to DC Padalarang, then to 
DC Cimahi, then to DC Cimahi, and finally return to 
PPC. 

1.5 

Route-5 
PPC to DC Ujung Berung, followed by a shift to DC 
Cikeruh and returns to PPC. 

1.5 

Route-6 
PPC to DC Cikeruh, then to DC Majalaya, and 
subsequently returns to PPC. 

1.5 

 
Distance: The distances between any two different DCs and PPC were 
collected from PPC Bandung 40400. It can also be determined by 



Multi-Criteria Decision-Making Model on Close-Open Mixed Vehicle Routing Problem  

for Middle-Mile Delivery Optimisation 
 

246   ISSN: 1985-3157    e-ISSN: 2289-8107   Vol. 18   No. 3   September – December 2024 

predefined routes, as shown in Table 3. 
 

Table 3: The distance between PPC and DCs 

DC 

Nodes 

DC 

SE 

DC 

SS 

DC 

AA 

DC 

KTP 

DC 

DYK 

DC 

CD 

DC 

  CA 

DC 

CKH 

DC 

LEM 

DC 

MJA 

DC 

PDL 

DC 

CMH 

DC 

UJB 

DC 

PDL 

DC SE 0 6.9 5.9 11.2 5.6 12.2 5.26 12.6 18.3 7.3 13.7 14.3 8.3 0 

DC SS 6.9 0 4.8 6.2 9.24 6.1 5.22 19 10.2 11.7 7.7 9 11.5 6.9 

DC AA 5.9 4.8 0 10.8 8.98 7.5 2.5 9.4 13.7 11.5 10. 4 8.3 6.7 5.9 

DC KTP 11.2 6.2 10.8 0 8.9 12.1 11.2
2 

23.1 16.2 12.4 8.4 11.5 19.3 11.2 

DC DYK 5.6 9.2 8.9 8.9 0 15.4 8.46 17.7 18.5 2.1 15.9 16.4 13.9 5.6 
DC CD 12.2 6.1 7.5 12.1 15.4 0 8.54 22.2 10 17.5 13.1 8.8 13.7 12.2 
DC CA 5.3 5.2 2.5 11.2 8.5 8.5 0 12.6 13.4 10.9 13.7 11.1 4.2 5.3 
DC CKH 12.6 19 9.4 23.1 17.7 22.2 12.5

6 
0 26.5 14.4 25.7 20.3 8.5 12.6 

DC LEM 18.3 10.2 13.7 16.2 18.5 10 13.4
4 

26.5 0 21.2 18.2 15 14.5 18.3 
DC MJA 8.8 11.7 11.5 12.4 2.1 17.5 10.9

4 
14.4 21.2 0 17.8 16.4 13.6 8.8 

DC PDL 13.7 7.7 10.4 8.4 15.9 13.1 13.6
6 

25.7 18.2 17.8 0 8.9 19.9 13.7 
DC CMH 14.4 9 8.3 11.5 16.4 8.8 11.1

2 
20.4 15 16.4 8.9 0 17.4 14.4 

DC UJB 8.3 11.5 6.7 19.3 13.9 13.7 4.16 8.5 19.5 13.6 19.9 17.4 0 8.3 

 
Delivery Route in the tertiary network served as an extension of the 
PPC and was responsible for transporting postal items from the PPC to 
the DCs. To manage this network, the PPC deployed six vehicles that 
operated daily, making two trips per day. These vehicles were 
primarily of the GrandMax type, each with an average capacity of 1.5 
tonnes. 
 
 

3.0  RESULTS AND DISCUSSION 
 

3.1  COMVRP Results 
 
The dataset of shipment delivery history from PPC Bandung 40400 
over a three-month period was used to generate a series of solutions. 
Each delivery was optimised using the COMVRP model, resulting in a 
total of 100 solutions, as illustrated in Figure 3. This result aligns with 
a previous study whereby the implementation of COMVRP involving 
external/rented EVs significantly impacted company efficiency as there 
was no need for charging time like owned EVs before returning to the 
depot as well as a reduction in route mileage [15]. 
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Figure 3: COMVRP Computational Result for Distance Travelled 

 
Each proposed solution specified the details of daily deliveries, 
including the number of routes, travel distance, travel time, demand, 
and the utilisation of internal or external vehicles. Compared to the 
existing route, the proposed solutions consisted of six routes spanning 
a total distance of 184.8 kilometres. The COMVRP model corroborated 
these results by demonstrating optimised delivery routes using a single 
external vehicle, as depicted in Figure 4. According to the historical 
data, the total distance travelled per delivery was less than that of the 
current route, thus reducing the average travel distance to 139.8 
kilometres with four routes. 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: The COMVRP Computational Results for the Number of 

Routes/Vehicles 

 
The COMVRP results indicate that the current delivery model's route 
distribution pattern can be improved as the average number of routes 
and vehicles used is suboptimal. 
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3.2  Monte Carlo Simulation Results for COMVRP Solution 

 
The MCS encompasses a range of statistical sampling methods that can 
be employed to approximate solutions for quantitative issues [18]. In 
the context of COMVRP, this simulation produces a collection of 
solutions to estimate the number of internal and external vehicles 
utilised and the total distance covered across all routes. Given that the 
variable values were derived from the historical delivery data, they 
were modelled using a normal distribution. Table 4 summarises the 
frequency of specific routes appearing within the solution set. 
 

Table 4: The COMVRP Average Number of Vehicle/Route 

Number of 
Routes 

Frequency 
Distribution 

Density 

Cumulative 
Distribution 

Function 

Tag 
Number 

MCS 
Number 
of Routes 

2 19 0.19 0.19 0 - 19 25 3 
3 13 0.13 0.32 20 - 32 54 4 

4 30 0.30 0.62 33 - 61 99 6 
5 31 0.31 0.93 62 - 92 60 4 

6 7 0.07 1.00 93 - 100 45 4 
Total 100 Average 4 

 
Table 4 presents the frequency of different numbers of routes occurring 
over 100 delivery simulations. Specifically, there were 19 instances with 
two routes, 13 instances with three routes, 30 instances with four 
routes, 31 instances with five routes, and seven instances with six 
routes. This simulation was based on an estimate of four routes or 
vehicles. To estimate delivery mileage, grouping and averaging were 
performed according to the simulated frequencies (Table 5). 
 

Table 5: The COMVRP Average Number of Mileage 

Distance Average Frequency 
Distribution 

Density 

Cumulative 
Distribution 

Function 

Tag 
Number 

Simulate Distance 

112 118 115 4.00 0.04 0.04 0 - 4 97 157 
119 125 122 8.00 0.08 0.12 5 - 12 74 150 

126 132 129 11.00 0.11 0.23 13 - 23 66 143 
133 139 136 25.00 0.25 0.48 24 - 48 43 136 

140 146 143 20.00 0.20 0.68 49 -68 37 136 

147 153 150 24.00 0.24 0.92 69 - 92 4 115 

154 160 157 8.00 0.08 1.00 93 - 100 67 143 
Total 100 Average 140 

 
The cumulative distribution function determines the probability of the 
distance travelled for each shipment according to the chosen routes. 
This function employs a normal distribution model to estimate the total 
distance for each delivery, as depicted in Figure 5.  
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Figure 5: The COMVRP travelled distance average 

 
In the analysed set of 100 solutions, the average mileage for each 
delivery route was 140 kilometres. Computational results from 
COMVRP, which pertained to the delivery routes developed by PPC 
Bandung 40400 Pos Indonesia (as detailed in Table 2), were optimised 
using a zone-based approach [19]. This optimisation method included 
the integration of external vehicles to decrease operational costs [6]. 
 
In this study, MCS was utilised to assess the practical applicability of 
the solutions derived from the COMVRP optimisation process. MCS is 
widely employed in modelling and simulation within this domain [20]. 
The results indicate that it is feasible to reduce the number of vehicles 
from the six currently used vehicles across 184.8 kilometres of delivery 
routes to four internal vehicles and one external vehicle with 140 
kilometres, thus increasing efficiency by 23.91%. Additionally, the 
COMVRP with MCS results demonstrate a reduction in the total 
distance travelled and that external vehicles can dynamically adjust 
priority routes based on demands from DCs. The distribution 
manager's role is crucial for ensuring the model’s practicality and 
realism. The proposed model integrating the distribution manager’s 
role into an MCDM technique, specifically using AHP-TOPSIS, can 
further improve the model's optimisation. 

 
3.3  AHP – TOPSIS – MCS Results 
 
The MCDM technique was employed to optimise routing through the 
evaluation of various alternatives. Both AHP and TOPSIS methods 
were utilised to address numerical challenges within this simulation. 
The following steps outline the procedure: 
Step 1:  The distribution manager determines the weighted criteria by 
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integrating insights from experts. 
Step 2: The AHP method processes these criteria to determine the 

weight assigned to each DC. 
Step 3:  The TOPSIS technique processes the weighted criteria to 

establish a priority ranking for the DCs. 
Step 4:  The DC priority rankings are formatted for input into the MCS. 

The simulation results will then reflect these rankings, which 
will be used to prioritise the DCs compared to the current 
routing. 

 
Figure 1 illustrates this process in detail. After analysing the dataset 
and assessing the performance of DCs for prioritisation, four key 
criteria were identified: 

i. Postal Bag: This refers to the number of postal bags needed for 
delivery, each containing collected items. 

ii. Demand: This represents the total weight (in kilograms) of items 
delivered to a DC. 

iii. Distance: This denotes the distance in kilometres between the 
PPC and the DC, as well as between different DCs. 

iv. Express Product: This includes items requiring expedited 
handling, such as Q9, Same-Day Delivery, and Special Express 
services. 

The AHP technique was used to assign weights to these criteria, which 
would then determine the priority of each DC. 
 

3.3.1  Performing AHP 
 
The initial stage of implementing the AHP method entailed specifying 
the criteria derived from the delivery dataset. These criteria are 
comprehensively outlined in Table 6. 
 

Table 6: The Criteria of DC Performance 
No Criteria Description 

1 Postal Bag Amount of postal bag. 

2 Demand Amount of weight for every DC. 

3 Distance Distance from PPC to DCs and between the DCs. 

4 Express Product Amount of weight of the express product. 

 
These equations were employed to construct the normalised pairwise 
matrix. The process began with the distribution manager entering the 
significance levels of the criteria. Next, the criteria were compared in 
pairs and Formula (10) was used to produce the normalised pairwise 
comparison matrix as shown in Table 7. This matrix was subsequently 
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processed to determine the consistency index using Formula (11) to 
(17). 
 

Table 7: Significance of Pairwise Comparison Matrix Values 
Value Definition Significance 

1 Equal importance Two elements contribute equally to the objective. 

3 Moderate importance 
Experience and judgment slightly favour one element over 
another. 

5 Strong importance 
Experience and judgment strongly favour one element over 
another. 

7 Very strong importance 
One element is favoured very strongly over another and its 
dominance is demonstrated in practice. 

9 Extreme importance 
The evidence favouring one element over another is of the 
highest possible order of affirmation. 

2,4,6,8 It can be used to express intermediate values. 

 
The following formulas were used to normalise the pairwise matrix: 

Nij= 
Cij

∑ Cij
n
i

                                               (10) 

Rows and columns are represented by i and j, respectively. The 
normalised form of the pairwise comparison is denoted as Nij. Both i 
and j can take any value from 1 to 4, corresponding to the four criteria. 
Afterwards, weights for the selected criteria were calculated using the 
following formula to ensure accuracy: 

Wi= 
∑ Ni

n
i

n
                                               (11) 

Here, i represents a column index, where i = 1, 2, 3, 4, …, n, and n is the 
total number of selected criteria. 𝑁𝑖 represents the value from the 
normalised matrix, while 𝑊𝑖 denotes the weight assigned to each 
criterion. Alternative weights are calculated similarly, denoted by 𝐴𝑖. 
After calculating the scores, the option with the highest score is 
selected. 

score = ∑ Wi* Ai                                         (12) 
After calculating the weighted sum, the ratio of the weighted sum to 
the criterion weight is determined using Formula (13): 

WSi= Ci x Wi                                            (13) 
𝑊𝑆𝑖 represents the weighted sum for the i-th criterion. In this context, 
𝐶𝑖 denotes the element of the pairwise comparison matrix and 𝑊𝑖 
denotes the weight assigned to the i-th criterion. 

Ri= 
W Si

Wi
                                                (14) 

𝐶𝐼 represents the Consistency Index, 𝐶𝑅 is the Consistency Ratio, and 
RI refers to the Random Consistency Index. The term 𝜆𝑚𝑎𝑥 denotes the 
maximum value of the eigenvalue. These concepts are essential 
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principles of AHP. The Random Index (𝑅𝐼) is calculated using the 
following formula: 

λmax= 
∑ Ri

n
i

n
                                           (15) 

CI= 
λmax-n

n-1
                                           (16) 

CR= 
CI

RI
                                              (17) 

 
As shown in Table 6, this study identified four criteria, leading to a 
random index of 0.9. The eigenvalues were calculated using the AHP 
method, as detailed in Table 8. The first operation manager considered 
the number of postal bags to be less significant than demand with the 
evaluation being based on pairwise comparisons of distance and 
express products. Distance was prioritised over demand and express 
products were regarded as more important than both demand and 
distance. In contrast, the second operation manager ranked demand, 
distance, and express products higher than the number of postal bags, 
similarly prioritising distance over demand, express products over 
demand, and express products over distance. 
 

Table 8: Significance of Pairwise Comparison Matrix Values 
No Criteria Eigen Value 

1 Postal Bag 0.0727 
2 Demand 0.1623 
3 Distance 0.2679 
4 Express Product 0.4971 

 
Once the weight values for each criterion were determined, the TOPSIS 
method used these weights to rank the DCs according to the provided 
dataset. 

 
 

3.3.2  Performing TOPSIS 
 
TOPSIS was used to determine the optimal ranking of DCs. First, the 
actual values must be entered and normalised using Formula (18): 

Xij
̅̅ ̅= 

Xij

√∑ Xij
2m

j=1

                                                (18) 

The normalised element is represented as 𝑋𝑖𝑗. Here, j indicates the 
column index, which can be 1, 2, or 3 in this case. 𝑋𝑖𝑗

̅̅ ̅̅  refers to the 
original, non-normalised value in the matrix. The weighted normalised 
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matrix is then calculated using Formula (19): 
Vij= Xij

̅̅ ̅ x Wj                                                 (19) 

Here, 𝑊𝑗 represents the weight assigned to the criterion. This weight 
was determined in the earlier section on AHP computation. 𝑉𝑖𝑗 refers 
to the normalised value of the matrix element. Next, the ideal best and 
worst values for each criterion are identified. For a beneficial criterion, 
such as express product, the ideal best value is the highest value in the 
column; for a non-beneficial criterion, it is the lowest value in the 
column. The ideal worst value refers to the inverse of the ideal best 
value based on the concept of opposites. Finally, Euclidean distances 
between the ideal best and worst values are calculated, as detailed in 
Formula (20) and (21): 

Si
+= √∑ (Vij- Vj

+)
∧

2                                         (20) 

Si
-= √∑ (Vij- Vj

-)∧ 2                                        (21) 

In this context, 𝑆+
− and 𝑆𝑖

− represent the Euclidean distances from the 
ideal best and worst values, respectively. The performance score is 
computed based on these distances and the alternative with the highest 
performance score is selected. The performance score is calculated 
using Formula (22): 

pij= 
S+

-

Si
++ Si

-                                                (22) 

In line with the AHP-TOPSIS method, Figure 6 depicts the priority 
ranking of DCs based on the evaluated criteria. It demonstrates the 
impact of each delivery repeated 100 times on the priority ranking of 
DCs according to the weighted criteria. The graph shows the ranking 
outcomes obtained from the TOPSIS analysis, revealing the priority of 
each DC and highlighting those with the highest and lowest rankings 
for each delivery. This result aligns with another study [21] whereby 
the hybridization of AHP and TOPSIS can yield superior choices for 
route determination and enable decision-makers to assess simulation 
outcomes according to their preferences and priorities, leading to more 
informed and robust decisions even with uncertain variables. 
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Figure 6: The DC First and Last Ranking Priority from AHP – TOPSIS 

 
3.3.3  Performing Monte Carlo Simulation for TOPSIS Results 
 
The implementation of MCS for setting DC ranking priorities was done 
according to the following steps. First, the ranking data produced by 
TOPSIS was converted into a matrix that represents the 13 DCs and 
their rankings across 100 deliveries (see Table 9) and ranks each DC 
according to the frequency of DC rankings. 
 

Table 9: The DC Ranking Frequency Matrix  

DC 
Nodes 

DC Ranking Frequency 

1 2 3 4 5 6 7 8 9 10 11 12 13 1 

1 3 3 6 4 2 5 6 11 11 5 10 12 22 1 

2 0 1 1 2 1 0 2 5 6 5 7 19 51 2 

3 43 12 7 6 5 3 4 2 10 6 2 0 0 3 

4 18 9 23 10 14 15 4 5 0 0 2 0 0 4 
5 0 3 1 2 6 3 9 6 10 12 16 25 7 5 
6 1 4 2 9 4 10 9 10 13 16 9 9 4 6 
7 1 4 6 5 11 6 14 9 11 9 13 8 3 7 
8 7 19 15 17 13 11 7 5 4 0 0 2 0 8 
9 0 2 3 5 3 2 3 9 7 18 25 15 8 9 

10 5 4 6 5 7 11 15 10 10 14 8 3 2 10 
11 3 6 5 7 11 17 14 12 13 4 4 3 1 11 
12 12 16 15 14 8 12 9 8 0 4 2 0 0 12 
13 7 17 10 14 15 5 4 8 5 7 2 4 2 13 

 
The next step involved determining the frequency distribution and 
conducting a MCS to centering the data. As indicated in Table 10, the 
data centering falls within classes 6 and 7, with an average value of 
17.333. 
 

Table 10: The MCS Frequency Cumulative Distribution  

Object 
Delivery 
Centres 

Average Frequency 
Distribution 

Density 

Distribution 
Cumulative 

Function 

Tag 
Number 

Monte Carlo 
Simulation 

ODCSIM 

1 22 0.18 4 0.0032733 0.003 0-3 788 22.267 

23 44 1.77 39 0.0319149 0.035 4-35 616 13.318 
45 66 3.50 77 0.0630115 0.098 36-98 722 13.318 

67 88 4.91 108 0.0883797 0.187 99-187 873 22.267 

89 110 7.00 154 0.1260229 0.313 188-313 334 9.6818 

111 132 9.68 213 0.1743044 0.487 314-487 662 13.318 
133 154 13.32 293 0.2397709 0.727 488-727 930 22.267 
155 176 22.27 334 0.2733224 1.000 728-1000 992 22.267 

Total 1222 Average 17.338 
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Table 10 displays the range of object DCs, which falls between 111 and 

132 as well as 133 and 154, with average frequencies ranging from 9.68 

to 13.32. The next step involved calculating the average in the MCS by 

running the specified number of iterations based on the provided 

formula. The MCS approach allowed the estimation of simulation 

errors according to the number of iterations performed. The total error 

was determined using the formula 
3 σ

√N
 ,where σ is the standard 

deviation of the random variable and N is the number of iterations. The 

standard deviation, σ, was calculated based on the entire population 

using the formula σ = √
∑ (x-x̅)2

N
, yielding σ = 3.7431. The desired absolute 

error value was less than 2%, which was obtained using the formula  

ε= 
x̅

(
1

0,02
)
, yielding ε = 0.14 and μ = 7. Therefore, the number of iterations 

required to obtain results with an error of less than 2% is N = 

(
3 x σ

ε
)

2
= 6.434 as shown in Table 11 and MCS set an average of 10,613.  

 
Table 11: The MCS of 6.434 Iteration 

Number of 
Iteration 

0.18 1.77 3.50 4.91 7.00 9.68 13.32 

0-3 4-35 36-98 99-187 188-313 314-487 488-727 

1 43
2 

347 117 662 767 354 791 972 

2 78
2 

413 39 958 288 342 113 89 

3 47
6 

460 150 758 666 729 267 102 

… … … … … … … … … 
6432 66

8 
757 811 576 620 438 519 154 

6433 35
9 

54 568 101 132 889 48 142 
6434 99

9 
831 831 720 226 892 329 279 

 
Based on the ranking and frequency analysis, the top four prioritised 
DCs were DC3, DC8, DC12, and DC13. Specifically, these were 
identified as follows: DCAA (Delivery Center of Asia Afrika), DCCKH 
(Delivery Center of Cikeruh), DCCMH (Delivery Center of Cimahi), 
and DCUJB (Delivery Center of Ujungberung). 

 
3.4  Results and Discussion 

 
Table 11 summarises the priorities for the DCs based on the AHP-
TOPSIS-MCS results. The simulation assessed each DC's performance 
according to specific criteria using the AHP-TOPSIS methods. The MCS 
then evaluated the importance of each DC based on the provided 
dataset. Such evaluation revealed which DCs were prioritised and 
frequently considered in delivery planning by operational managers. 
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The simulation results showed that several DCs excelled in the four 
assessed criteria. These DC priorities were incorporated into the initial 
solution of the GA, as depicted in Figure 6. The GA chromosome 
combined the nearest neighbour (NN) initial solution with the four DC 
priorities derived from the AHP-TOPSIS-MCS method. 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The DCs Priority in GA Initial Solution 

 
 
The prioritisation of DCs using AHP-TOPSIS-MCS indicated that the 
four DCs identified by the simulation were prioritised according to the 
specified criteria. It suggests that these DCs are significant for express 
product handling and demand capacity. Operational managers can use 
this information to optimise route planning, scheduling, and vehicle 
allocation for prioritising postal deliveries. The simulation results from 
AHP-TOPSIS-MCS were integrated with the nearest neighbour 
algorithm outcomes to form the initial chromosome for GA in 
COMVRP. Each delivery scenario will be evaluated using COMVRP, 
thus generating a new set of solutions as illustrated in Figure 7. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7: Comparing the Travel Distance 
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Simulation results from the 100 datasets indicated that the MCDM-
COMVRP model converged faster on average across 100 iterations 
compared to the COMVRP model with an average route mileage of 133 
kilometres. This improved performance was also reflected in the 
computational time, as depicted in Figure 8. There was higher 
efficiency by 4.86% compared to COMVRP and 28.03% compared to 
the existing delivery. 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Comparing the Travel Distance 

 
The results from MCS indicated an average of four routes or vehicles. 
When comparing routes between COMVRP and the MCDM-COMVRP 
approaches, the proposed algorithm demonstrated that each external 
vehicle route prioritised passing through the designated DCs. 

 
4.0  CONCLUSION 

 

The proposed algorithm reduced mileage in dataset-based delivery 
scenarios while also improving computational efficiency. Despite 
considering four criteria outlined in the constraints and sometimes 
referring to priority rankings of DCs, the algorithm must still account 
for DCs that need to be visited. This might lead to longer travel 
distances and increased mileage in certain cases. Many metaheuristic 
algorithms rely on their inherent capability to find optimal solutions, 
with GA often being used in such processes. Computational results 
showed that determining the number of prioritised DCs could reduce 
the mileage from 140 kilometres based on the COMVRP results to 133 
kilometres based on the proposed method, increasing efficiency by 
4.86% and achieving the shortest computing time by 28.03% compared 
to the existing delivery. The simulation results indicate that 
optimisation can be achieved by utilising the existing distribution 
network. It also involves an external fleet through the application of the 
COMVRP model while engaging internal stakeholders who possess 
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experience and historical delivery data analysis using the AHP-TOPSIS 
technique. 
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