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ABSTRACT: This study presents the robustness of the precision motion 
control system of a thin and compact linear switch reluctance motor (LSRM). 
The control system employs a linearizer unit along with a feed forward 
element and a disturbance observer for precision motion performance. 
Although numerous tracking experiments were carried out to evaluate the 
effectiveness, their robustness towards sudden load and speed change 
remains unclear. We performed a sudden load of 50% change in mass and a 
sudden speed variation 4 times as fast as initially. By conducting the 
experiments, we found that it takes approximately 0.05 s for the control 
system to regulate to the determined ramp-reference motion, and the 
precision motion performance was maintained having a maximum absolute 
tracking error of less than 5 μm. In conclusion, these results indicate that the 
control system has the ability to quickly suppress the sudden load and speed 
change. 
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1.0 INTRODUCTION 
 

Linear drive mechanisms such as electromagnetic linear motors are 
suitable driving units for a high-speed and high-precision system [1-
2]. However, permanent magnets (PMs) used in the motors have 
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powerful attractive forces. To avoid the usage of PMs, a linear motor 
based on a linear switched reluctance motor (LSRM) can be 
considered, making it easy to assemble and disassemble it. Without 
the bulky PMs, the basic structure of the LSRM is thin and compact. 
Achieving precision control is, however, difficult due to the three-
dimensional relationship among the thrust force, applied current, and 
mover position [3]. In addition, the motor exhibits a nonlinear friction 
that further reduces the effective thrust force, which changes with 
respect to the applied current and mover position.  
 
The demand on high-precision performance has increased [4-5]. The 
study by Gan et al. [6] is one of the earliest studies on precision 
performance. They proposed a concept that helps employ a novel 
current–force–position lookup table to linearize the force, which has 
been valuable to this study. Although numerous studies on the 
applications of LSRMs pertaining to precision positioning have been 
reported [7-10], only a few tried to achieve precision motion 
performance. Zhao et al. [11] designed a robust passivity-based 
control algorithm based on the dissipated energy. Although they 
claimed that the trajectory-tracking performance using the proposed 
algorithm was excellent, the tracking errors were never provided. 
Chen and Li [12] employed a trajectory-tracking technique based on 
iterative control and hybrid iterative learning control methods. The 
tracking errors were reduced to an average value of 0.7 mm for a 
sinusoidal reference of amplitude 5 mm. A decoupling-motion control 
algorithm based on torque and force distribution functions was used 
to obtain a better operational performance, without providing the 
tracking errors [13]. In addition, other than the aforementioned 
LSRM, studies on precision motion performance of planar switched 
reluctance motor have been reported. The maximum absolute 
tracking errors using a nonlinear cascade controller for the planar 
motors [14] and the modified planar motors [15] were 0.5 mm and 22 
μm, respectively. 
 
This paper presents robust control for precision motion performance 
of the developed LSRM based on the precision motion control system 
in [16]. Although numerous tracking experiments were carried out 
previously [16], their robustness towards sudden load and speed 
change remains unclear.  As the robustness of the control system is 
critical, the sudden load and speed change on the motion 
performance were investigated experimentally.  
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The remainder of this paper is organized as follows. In Section 2, the 
prototype as well as the structure of the precision motion control 
system are explained. Section 3 describes the tracking results and 
discussion are described. Finally, Section 4 presents the conclusions of 
this study. 
 
 
2.0 METHODOLOGY 

 
2.1 Prototype of the LSRM 

 
Figure 1 shows the schematic diagram of the experimental setup. A 
digital signal processing (DSP) system provided the driving signals to 
be applied to the commercial current amplifiers. These amplifiers are 
used to drive each phase of the coil. Simultaneously, the DSP system 
obtains the displacement of the mover from the linear encoder. 

 

 
Figure 1: Schematic diagram of the experimental setup 

 
Figure 2(a) shows the overall view of the prototype LSRM, while 
Figure 2(b) shows the fabricated mover. The mover has a length of 80 
mm and a total weight of 0.67 g, a 20% change in mass over the ones 
used in [7]. It is placed on the sliding surface between the stator coils. 
The surface is bonded with a low-friction polytetrafluoroethylene 
(PTFE) film, supported by a PTFE linear sliding guide The 
displacement of the mover is obtained using a linear encoder 
(Mercury II 5800 by GSI Group Inc.) mounted above the motor. 
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(a) 

 

 
(b) 

Figure 2: Overall view of (a) prototype LSRM and (b) fabricated mover 
 
2.2 Structure of the Precision Motion Control System 

 
Figure 3 shows the block diagram of the control system for precision 
motion. The linearizer unit was constructed in [7] to suppress the high 
nonlinearity of the driving characteristics. It includes a feed forward 
(FF) element and a disturbance observer to compensate the dynamic 
characteristic and to reduce the negative influence of the unknown 
disturbance force [17]. They were designed using the same procedure 
and has the same parameters as in [16]. 
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Figure 3: Block diagram of the control system for precision motion 

 
 
3.0 RESULTS AND DISCUSSION 

 

Tracking experiments were conducted to evaluate the effectiveness of 
the control system described in Section 2.2. Table 1 lists the 
determined gains used for the PID element. The gains were 
determined experimentally and adjusted to reduce the steady-state 
error during positioning [7]. The control sampling frequency was 10 
kHz, and the linear encoder’s resolution was set to 0.1 μm. 

 
Table 1: Control parameters 

Symbol Description 
Pre-processing 

Value (unit) 
Kp Proportional gain 

~10 flops 
20 (N/m) 

Ki Integrator gain 

 
60 (N/m) 

Kd Derivative gain 

 
0.3 (N/m) 

 
Figure 4 shows the ramp response of the control system for precision 
motion at input 3.75 mm/s. The maximum absolute tracking error is 
approximately 2.8 μm. At positions where the phases are switched, a 
high rate of change of current induces vibrations, however, errors 
were reduced sufficiently using the control system. Previous works in 
[16] had shown that even when there is a change on the length and 
mass of the movers, the same precision motion performance is 
achieved with maximum absolute tracking errors within 5 μm. 
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Figure 4: Ramp response of the control system for precision motion  

with respect to position 
 

In order to verify the robustness of the control system to the sudden 
load change, a load with a 50% change in mass was dropped at 0.35 s, 
shown in Figure 5. The mover in Figure 2(b) was used as it has an 
area exposed for the load to be dropped. The load is made from 0.3 
mm thick copper plate. As can be seen, it takes approximately 0.05 s 
for the control system to regulate to the determined ramp-reference 
motion. 
 

0 1 2 3 4 5
-3
0
3

Phase C

Position (mm)

-3
0
3

Phase B

Cu
rre

nt
 (A

) 

 

-3
0
3

Phase A 

-8
-4
0
4
8

 

Tr
ac

ki
ng

 e
rro

r (
m

)

-6
-4
-2
0
2
4
6

 

 

V
el

oc
ity

 (m
m

/s)



Robust Control for Precision Motion of a Thin and Compact Linear Switched  
Reluctance Motor

59eISSN: 2289-8107        Special Issue AdManTi 2019

Journal of Advanced Manufacturing Technology (JAMT) 
 

 
Figure 5: Tracking response of the designed control system under the 

influences of the sudden load change with ramp response:  
3.75 mm/s with respect to time 

 
On the other hand, Figure 6 shows the robustness result of the control 
system to the sudden speed change, whereby a sudden speed 
variation 4 times as fast as initially were carried out at 1 s. Again, it 
takes approximately 0.05 s for the control system to regulate to the 
determined ramp-reference motion and the precision motion 
performance was maintained. These experimental results indicate that 
the control system has the ability to quickly suppress the sudden load 
and speed change. 
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Figure 6: Tracking response of the designed control system under the 

influences of the sudden speed change with ramp response:  
from 3.75 to 15 mm/s with respect to time 

 
 
4.0 CONCLUSION  

 

In this paper, the robustness of the precision motion control system of 
a thin and compact LSRM was presented. As the robustness of the 
control system is critical, the sudden load and speed change on the 
motion performance were investigated experimentally. By conducting 
the tracking experiments, we found that it takes approximately 0.05 s 
for the control system to regulate to the determined ramp-reference 
motion and the precision motion performance was maintained. The 
experimental results indicate that the precision motion control system 
has high robustness to the sudden load and speed change. 
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