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ABSTRACT: Fibre metal laminates (FML) technology is the best practice 
for wider usage of natural fibre. It could offer many superior mechanical 
properties because of the incorporating of metal elements. Therefore, the 
study is to reveal the findings of kenaf fibre/epoxy reinforced aluminium 
laminates (KeRALL) through the compression method. In this study, the 
temperatures of 27°C and 80°C were applied for the compression method. It 
was found that KeRALL WC yields higher Tg than KeRALL CC based on the 
DSC analysis. The KeRALL WC showed the highest flexural strength and 
better impact resistance as compared to KeRALL CC. For water absorption, 
KeRALL WC absorbed less water absorbed compared to KeRALL WC. For 
thermal expansion, the trend of the coefficient of thermal expansion (CTE) for 
KeRALL WC almost equal to the Al sheet with approximately 21% differences. 
Meanwhile, CTE for KeRALL CC was slightly different from the Al sheet and 
KeRALL WC. Finally, the fractographic image showed that the KeRALL WC 
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sample had better interfacial bonding between composite (kenaf and epoxy) 
and Al sheet compared to the KeRALL CC. It was suggested that better 
bonding affects the overall properties of KeRALL. The empirical evidence 
presented in the results shows that KeRALL WC has the potential to be 
commercialized. 
 
KEYWORDS: Kenaf Fibre/Epoxy Reinforced Aluminium Laminates; 
Compression Method; Mechanical and Physical properties; Thermal Properties; 
Fractographic Images 

 

1.0 INTRODUCTION 
 

Generally, natural fiber composites have a lower strength as compared 
to the composites reinforced with synthetic fibers such as glass, carbon, 
and aramid. Also, composite which was involved natural fibers is 
facing some disadvantages such as easy to faces environmental 
degradation that caused the mechanical properties reduction. Natural 
fibre composites may first be exposed to UV radiation, resulting in 
photo-oxidative degradation, chain scission, cross-linking and 
consequent debonding of composites [1-2].  For that reason, an 
alternative way should be explored in order to increase the range of 
application of natural fiber composite in industries.  
 
For instance, fiber metal laminates (FML) technology is an effective 
way to solve the disadvantages of natural fiber composite. Basically, 
FML is a hybrid material, in which it combines some favorable 
properties of metallic materials and fibre composites. FML has been 
produced by the combination of synthetic fibres namely aramid, 
carbon and glass where known as ARALL (Aramid Fibre Reinforced 
Aluminium Laminate), CARALL (Carbon Fibre Reinforced 
Aluminium Laminate) and GLARE (Glass Fibre Reinforced 
Aluminium Laminates) respectively [3-5]. Indeed, FML offer several 
advantages such as high mechanical strength (tensile and impact) 
compared with conventional polymer composites and aluminium 
alloys materials [4].  
 
Beside, in reducing the cost of FML and a pollution-free environment, 
an attempt has been made in bringing in a natural fiber, a cost effective 
and eco-friendly fiber into the FML [6]. For example, kenaf bast fibres 
are attractive because of high specific strength to weight ratio [7]. 
Furthermore, there is an increasing interest in the utilization of kenaf 
fibres especially for reinforcement materials in polymer composite 
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technology [8]. Several applications of synthetic polymers reinforced 
kenaf fibre include automotive industry (wallboards, ceilings, interior 
lining) and furniture [9]. Additionally, there is no claim or research on 
FML that involving kenaf fibre as a reinforcement.  

 
Although the FML involving natural fibre has the great potential for 
future use, the report on their mechanical, physical, and thermal 
properties are still lacking. Thus, this study aims to characterize the 
overall performance of the Kenaf Fibre/Epoxy reinforced Aluminium 
Laminates (KeRALL). In summary, this study is focusing on the 
KeRALL fabrication process, evaluate mechanical, physical, and 
thermal properties of KeRALL as well as fractographic observation for 
the readiness of sustainable KeRALL are set up for various 
applications. 

 
 

2.0 EXPERIMENTAL 
 
2.1 Materials 
 
In this study, kenaf bast fiber (KF) in the form of a non-woven mat was 
used. KF was purchased from Innovative Pultrusion Sdn. Bhd, 
Malaysia, and received in a form of the non-woven mat with a surface 
density of 800g/m2. The KF mat was treated with 5% sodium hydroxide 
(NaOH) before dried at 70°C for 24 hours. Epoxy resin (EPO DM 15 
(F3) – A) and hardener (EPO DM 15 (F3) – B) supplied by CHEMREX 
Corp. Sdn. Bhd. was used. The epoxy resin acts as matrices for 
composite parts (kenaf and epoxy) and an adhesive bond between the 
composite part and Al sheets. The ratio of epoxy to hardener was 5:1. 
As for the protective layers, aluminum sheets 2024-T3 (Al) with a 
thickness of 0.5 mm which was supplied by Kird Enterprise were used. 
Initially, the Al sheets were sanded by using 60-grit sandpaper. Then, 
the sanded Al sheets underwent a water break test through water 
spillage to ensure the metal surface was totally clean and uniform. 
 
For KeRALL sample preparation, initially, kenaf was wetted out with 
epoxy resin and covered by two Al sheets. While a kenaf fiber-
reinforced composite (KFRC) was prepared as a reference sample for 
comparison purposes. Both samples were fabricated via cold 
compression denoted as CC at 27°C and warm compression denoted 
as WC at 80°C using a hydraulic press (GOTECH). The pressure of 1000 
psi (65kg/cm2) was applied during the compression process. A square 
steel mould with a dimension of 150 x 150 x 4 mm was used. The mould 
was applied with a release agent to ease the demoulding process. 
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Figure 1 shows the KeRALL fabrication process. 
 

 

Figure 1: The process flow of (a)-(c) KeRALL fabrication using compression 
method and (d)-(f) the samples after compression top and side view  

(cross section area) 
 
For specimen preparation, mechanical cutting equipment was used to 
cut the specimen according to the ASTM standards. The samples were 
tested for different behaviors such as mechanical (flexural and impact) 
and physical (density and water absorption), thermal analysis (DSC 
and thermal expansion), and morphological observation. The flexural 
test was carried out by using GOTECH A1-7000-LA 50 kN at 23˚C ± 2˚C 
and 50% ± 5% relative humidity following ASTM D790.  The impact 
test was performed by Instron-CEAST 9050 Impact Pendulum with 
pendulum energy of 2.75 J (KeRALL) and 0.5 J (KFRC) following ASTM 
D256 for edgewise notched Izod impact test. Moreover, a water 
absorption test (ASTM D 570) was performed at 30˚C for 20 days in a 
water bath, Yamato-BK610. The density of KeRALL and KFRC was 
measured by ASTM D 792 by using a laboratory density meter at room 
temperature. DSC model Q20 (TA Instrument) was used utilized to 
determine glass transition, also known as Tg. Thermal expansion of 
KeRALL and KFRC sample was measured using a dilatometer (Series 
DIL 402 C) by Netzsch. Finally, a scanning electron microscope (SEM) 
was utilized for fractographic observation. 
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3.0 RESULTS AND DISCUSSION 
 
3.1 Structural Determination of KeRALL  

  
For structural determination, KeRALL are characterized based on their 
metal volume fraction (MVF) which is defined in the following 
equation [10]: 
 

           
laminate

n
1 metal

t

t
MVF ∑

=                                                            (1) 

                                                                                                  
where tmetal = thickness of each metal layer, n = number of the metal 
layers and tlaminate is the thickness of the total laminate.  
 
From Figure 2, the value of MVF for KeRALL is about 0.25, indicating 
a predominantly composite fraction in KeRALL. An MVF value of zero 
refers to a full composite, and 1 means an almost monolithic metal. 
Moreover, the average volume fraction of the composite (kenaf and 
epoxy) and Al sheets in KeRALL are 77 and 23%, respectively. The 
result shows that the KeRALL density is 1.4±0.1 g/cm3. It shows that the 
density of KeRALL is 50% reduced as compared to the Al sheet. 
Addition of aluminium sheets to the composite part known as KeRALL 
sandwich contributed to an increase of 22.8% in density compared to 
KFRC. The percentage of increase due to aluminium plates is almost 
like the result reported by Vieira et al. [11], where the researchers found 
the addition of aluminium contributed to 23.8% of the increase. 
Besides, it also found that there is no difference in density between 
KeRALL warm compression (KeRALL WC) and cold compression 
(KeRALL CC). 

 

 
Figure 2: Cross sectional area of KeRALL 
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and CC = 58 – 60˚C. WC shows a higher degree of curing for matrix resin. The heat 
capacity of the CC sample is larger than the WC sample, thus the heat flow for the CC is 
lower than WC before the onset temperature of the cure reaction.  For WC, the curve 
becomes almost horizontal after 130 – 140°C while the CC curve after 170 – 180°C (second 
Tg). This means that the curing reaction for WC and CC is almost complete around this 
temperature range. There is a difference in heat flow at the end of the test between CC 
and WC, which resulted from different initial conditions, such as the initial heat given to 
the sample. For the WC sample, the heat was initially introduced during the compression 
process; thus, less exothermic toward the end of the temperature program. Therefore, it 
predictably affected the overall performance of KeRALL. Theoretically, optimum curing 
results in a perfect cross-linked polymer network, which leads to increase Tg and 
mechanical properties [13]. 

 

       
Figure 3: DSC curves of KeRALL composite core 

 
3.3 Flexural Properties  
 
Figure 4 shows the flexural strength of KeRALL and KFRC. The aluminium sheets in 
KeRALL induce significant flexure strength as compared to KFRC, approximately ~ 
400% of the increase. As a comparison, the mean specific flexural strength of the sisal 
fibre reinforced aluminium laminates (SiRALs) was significantly higher than sisal fibre 
reinforced composites (SFRCs) revealing increases of 430% [11]. The significant 
difference of the increment for both KeRALL and SiRAL might be because of the usage 
of different natural fiber, which is kenaf fibre non-woven mat with a surface density of 
800g/m2 for KeRALL and SiRAL using sisal fibre in the fabric plain weave form with a 
surface density of 1300g/m2. Moreover, KeRALL and KFRC prepared by WC are found 
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to show better flexural properties as compared to CC. This is due to the activation of 
monomers by an applied temperature that contributes to the cross-linking process [13]. 
Moreover, thermal curing is the process of temperature-induced chemical change in a 
material, such as the polymerization of a thermoset resin. This process is relevant, for 
example, when a precursor resin is heated and hardens during the manufacturing of 
composites. 

       
Figure 4: Flexural strength of KeRALL and KFRC 
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example, when a precursor resin is heated and hardens during the manufacturing of 
composites. 
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Figure 3: DSC curves of KeRALL composite core 
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compared to KFRC, approximately ~ 400% of the increase. As a 
comparison, the mean specific flexural strength of the sisal fibre 
reinforced aluminium laminates (SiRALs) was significantly higher 
than sisal fibre reinforced composites (SFRCs) revealing increases of 
430% [11]. The significant difference of the increment for both KeRALL 
and SiRAL might be because of the usage of different natural fiber, 
which is kenaf fibre non-woven mat with a surface density of 800 g/m2 
for KeRALL and SiRAL using sisal fibre in the fabric plain weave form 
with a surface density of 1300g/m2. Moreover, KeRALL and KFRC 
prepared by WC are found to show better flexural properties as 
compared to CC. This is due to the activation of monomers by an 
applied temperature that contributes to the cross-linking process [13]. 
Moreover, thermal curing is the process of temperature-induced 
chemical change in a material, such as the polymerization of a 
thermoset resin. This process is relevant, for example, when a precursor 
resin is heated and hardens during the manufacturing of composites. 
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Figure 5: Izod Impact test for KeRALL (WC and CC) and KFRC (WC and CC) 
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Figure 6: Water absorption of KeRALL and KFRC 
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the vulnerable edges section can still absorb the water. According to 
Botelho et al. [3] the moisture absorption in FML composites is slower 
than polymer composites even under a relatively harsh conditions due 
to the barrier of the aluminium outer layers. From WC and CC results, 
degree of curing epoxy plays an important role in determining the 
water absorptivity of the materials. Level of epoxy curing degree has 
given different effect toward KeRALL and KFRC. Hence, it can be 
concluded that the heat applied during compression causes the 
improvement in curing degree of KeRALL, thus directly decreases the 
water absorption of the FML composite. 
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At above the Tg point, it can be observed that the composite part of KeRALL as well as 
the matrix of KFRC started to malleable after entering the rubbery region of epoxy. This 
phenomenon correlates to the intrinsic properties of a thermosetting polymer. In a hot 
environment, the polymer structure will turn into rubber-like and encourage for post-
curing activities. Then, when the heat was forcefully applied above the Tg point, the rigid 
structure of epoxy polymers will damage because of polymer cross-link chain damages. 
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Table 1: Coefficient of thermal expansion (CTE) of various samples 

 
Figure 7 shows the thermal expansion behaviour of Al sheet and 
KeRALL (WC and CC). From the figure, CTE of KeRALL WC is almost 
equal to the Al sheet under the temperature range of 40 to 160°C, with 
approximately 21% differences as referred to in Table 1. Meanwhile, 
The CTE of KeRALL CC shows slightly differs from the Al sheet and 
KeRALL WC with a difference of 39% and 32%, respectively. All the 
differences are starting at the Tg point of the epoxy. 
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Table 1: Coefficient of thermal expansion (CTE) of various samples 
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Moreover, FMLs would be subjected to failure under a cyclic temperature exposure 
mainly at the metal/composite interface, due to differences up to 80% in the thermal 
expansion coefficient of the components [18-19]. 
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the matrix phase, which caused catastrophic damage to the structure.  It is strongly 
believed that WC increased the interfacial bonding between metal and composite of 
KeRALL. Furthermore, a high volume of voids was observed in CC. These voids 
happened because of the trapped gaseous (normally oxygen) and moisture content, 
especially during the processing time. For thermosetting composites, studies showed 
that the entrapped air and volatiles generated during the curing process are the major 
source of the voids, and the voids can be eliminated by introducing resin flow using high 
pressure, and vacuum in various processing methods [20]. In contrast, the applied 
temperature in this study, 80°C, has reduced the number of voids as can be seen on 
KeRALL WC. Heat is essential to break the trapped gaseous and subsequently 
compressed with high pressure for voids reduction. 
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Figure 8 shows the behaviour of KFRC sample for both processes of 
WC and CC. It is observed that two peaks occur on both KFRC, but 
more obvious on KFRC CC. The result suggests that heat plays an 
important rule for curing stage of epoxy polymer where WC show a 
better degree of curing as compared to CC. The applied heat during the 
processing time provides some changes on the degree of curing epoxy 
KFRC was expanding parallel with the increasing of temperature, 
especially before the glass transition (Tg) point. After the Tg point, 
KFRCs expansion suddenly decreases because of epoxy rubberry 
region and continuously increases after that due to the rigidity of fibre 
reinforcement (kenaf). Besides KeRALL, the epoxy was slightly going 
down and going up in parallel to the increasing temperature. This 
happened due to the rigidity of fibre reinforcement (kenaf) as well as 
Al sheets of KeRALL. In addition, Al sheet acted as a protective layer 
for a composite part from the heat effect. It means that the applied 
temperature is not directly affecting the composite part. In this 
situation, the Al sheet also functions as a heat absorber for KeRALL. In 
conclusion, it can be said that Al sheet protects the rubbery-like 
properties of epoxy on KeRALL and increases the thermal expansion 
coefficient (CTE). Significant differences in CTEs between the 
composite parts and aluminium sheets may result in structural failure. 
Since the metallic substrate is impermeable to moisture, only the 
polymeric adhesive absorbs moisture and causes a mismatch in 
hygroscopic strains [17].  
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temperature exposure mainly at the metal/composite interface, due to 
differences up to 80% in the thermal expansion coefficient of the 
components [18-19]. 
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Figure 9: Fractographic images of KeRALL samples: (a) KeRALL CC and (b) KeRALL WC 

 
 

4.0 CONCLUSION 
 

In conclusion, KeRALL WC showed better mechanical, physical, and thermal properties 
as compared to KeRALL CC and KFRC. KeRALL WC yields the highest Tg that affects 
the overall properties of the KeRALL. The fractographic image showed that the KeRALL 
WC sample had better interfacial bonding between composite (kenaf and epoxy) and Al 
sheet compared to KeRALL CC. Even though KeRALL WC showed a slightly lower on 
the flexural strength than SiRALs that studied by the previous researcher, but it remains 
competitively for further commercialization. It could be enhanced by adding more 
volume of the fibre in KeRALL’s fraction. The finding suggests that KeRALL has high 
potential as a new sustainable FML composite and can be considered as a promising 
candidate for future industrial applications. 
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