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ABSTRACT: This work presents a comparative analysis of state of charge 
(SOC) estimation for lithium-ion battery using neural network algorithms. The 
lithium-ion battery has been operating successfully in the automotive industry 
due to the long-life cycles, low memory effect, high voltage, and high energy 
density. As such, numerous research works have been conducted on lithium-
ion battery towards estimating SOC. The conventional and model-based SOC 
estimation approaches have shortcomings including heavy computational 
calculation and inaccurate battery model parameters determination. Therefore, 
neural network algorithms based SOC estimation have received huge attention 
since they have the adaptively to adjust the network parameters automatically 
without battery model. Three prominent neural network algorithms including 
backpropagation neural network (BPNN), radial basis function neural 
network (RBFNN) and recurrent nonlinear autoregressive with exogenous 
inputs neural network (RNARXNN) are used to compare the SOC estimation 
results. The three methods are validated by battery experimental tests and 
electric vehicle (EV) drive cycles. The results demonstrate that RNARXNN is 
dominant to BPNN and RBFNN algorithms in obtaining high SOC accuracy 
with the low computational cost. 

KEYWORDS: State of Charge; Lithium-ion Battery; Neural Network; Electric 
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1.0 INTRODUCTION 

 

The demand for battery storage systems (BSSs) is increasing at a 
dramatic rate around the world to address carbon emissions, climate 
change, and global warming challenges [1]. The global battery market 
is growing rapidly especially in Asia-Pacific regions with government 
incentives, supportive policies, and regulations which in turn generates 
huge revenue to the battery industries. Several electrochemical 
rechargeable batteries are being actively used in different applications 
[2]. The lithium-ion battery holds promising features in terms of high 
energy capacity, high voltage and long lifecycle [3].  
 
State of charge (SOC) indicates the existing charge capacity which is 
stored inside a lithium-ion battery [4]. Various SOC estimation 
algorithms have been reported in the literature [5]. Generally, SOC 
estimation methods are classified into three groups; conventional 
approach, model-based approach, and intelligent approach. The 
coulomb counting method and open-circuit voltage (OCV) are known 
as conventional approaches. The coulomb counting method has a 
simple execution but suffers from poor robustness and accumulator 
error [6]. The OCV method has reasonable precision but has a 
limitation of online implementation [7]. Kalman filter (KF) is 
commonly used as model-based SOC estimation techniques [8]. They 
can deliver accurate results; however, their execution is constrained by 
highly complex mathematical computation and inaccurate battery 
model parameters. Fuzzy logic and neural network are the popular 
subclasses of intelligent approaches. Fuzzy logic offers good results; 
however, the generation of fuzzy rules is a difficult task due to battery 
non-linear characteristics [9].  
 
The neural network algorithms offer excellent outcomes in SOC 
estimation since they do not need an added filter, battery model, 
extensive mathematical equations to capture the battery non-linear 
characteristics. Hence, this paper presents the comparative analysis of 
SOC estimation for lithium-ion battery using state-of-the-art neural 
network algorithms including backpropagation neural network 
(BPNN), radial basis function neural network (RBFNN), and recurrent 
non-linear auto-regressive with exogenous inputs neural network 
(RNARXNN) algorithms.  Journal of Advanced Manufacturing Technology (JAMT) 

 
The performance is compared using different error rate terms and 
computational cost.   

 
2.0 NEURAL NETWORK ALGORITHMS BASED SOC 

ESTIMATION METHODS 
 
2.1 BPNN Algorithm 

 
A feed-forward BPNN model is designed using three layers; input 
layer, hidden layer, and output layer, as shown in Figure 1 [10].  
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Figure 1: BPNN structure for SOC estimation 
 
The hidden layer output is expressed using the following equations 
[11]: 

( )=j jO f net                                             (1) 

θ= +∑ , ,j i j i i j
j

net w x                                       (2) 
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where, 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  and 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the weight and bias from the input layer to 
the hidden layer. The operation of the hidden layer is performed using 
the log-sigmoid transfer function. The final result of the output layer as 
shown in [11]] can be written such as  

( )=k kO f net                                              (4) 

θ= +∑ , ,k j k j j k
k

net w O                                     (5) 
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The weight and bias from the hidden layer to the output layer is 
denoted as 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗  and 𝜃𝜃𝜃𝜃𝑘𝑘𝑘𝑘,𝑗𝑗𝑗𝑗  respectively. The output layer uses a linear 
activation function to deliver the results. The output layer error is 
calculated as 

= −k k ke T O                                               (6) 

( )′∂ =k k ke f net                                           (7) 

The true output is denoted as  𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘. The hidden layer error can be 
formulated as  

( )′∂ = ∂ ,j j k j kf net w                                       (8) 

The value of weight and biases are updated using the following 
equations [11]: 

α∆ = ∂,j k k jw O                                            (9) 

= + ∆, , ,j k j k j kw w w                                       (10) 

α∆ = ∂,i j k iw x                                           (11) 

= + ∆, , ,i j i j i jw w w                                         (12) 

θ α∆ = ∂,j k k                                             (13) 

θ θ θ= + ∆, , ,j k j k j k                                         (14) 

θ α∆ = ∂,i j j                                              (15) 

θ θ θ= + ∆, , ,i j i j i j                                          (16) 

where 𝛼𝛼𝛼𝛼 is the learning rate. 
 
 
2.2 RBFNN Algorithm 
 

A RBFNN is a feed-forward self-learning algorithm that consists of a 
non-linear function with a symmetrical organization. The structure of 
RBFNN consists of three-layer including one input layer, one hidden 
layer and one output layer as shown in Figure 2. The center and width 
terms of the j Gaussian distribution function are denoted by 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚  and 
𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚, respectively [12]. The output of the mth hidden neuron of the 
RBFNN can be expressed as in [12] such as 
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where, 𝑥𝑥𝑥𝑥 is the input vector in the input layer, 𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚 and 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚  represent the 
center and width of mth hidden neurons in the Gaussian function, 
respectively.  The output of RBFNN comprises linear function and is 
determined by multiplying the weight values with hidden nodes, as 
shown in the following equation [12]: 

( )φ
=

= =∑
1

,   1,2,...,
M

k km m
m

y w n for k m                       (18) 

where, 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘 represents the output of the kth neuron in the output layer, 
𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚  denotes the weight that connects the mth hidden neurons to the kth 
output layer neuron and 𝜙𝜙𝜙𝜙𝑚𝑚𝑚𝑚 is the hidden layer output for mth neurons.  
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Figure 2: The structure of RBFNN for SOC estimation 

 
2.3 RNARXNN Algorithm 

 
RNARXNN algorithm exhibits improved learning performance and 
fast computational speed which is suitable to address lithium-ion 
battery non-linear characteristics. The structure of RNARXNN is 
configured using three layers like BPNN and RBFNN and additional 
output feedback layer and past information of the input layer, as shown 
in Figure 3 [13]. In this paper, the SOC estimation is estimated using a 
parallel architecture based RNARXNN method where the training and 
validation processes are operated using the closed-loop system. The 
output of RNARXNN can be formulated as  in [13] such 
 

( )

( ) ( ) ( )
= = = =

+ =

  
+ + − + − + −      
∑ ∑ ∑ ∑

1 2

1 2
1 2

0 0 1 1 2 2
1 0 0 0

1

.
du du dyN

ho h h i h i h jh
h i i j

y n

f b w f b w u n i w u n i w y n j
 (19) 

 
where weights, biases, and activation functions are characterized by 
𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖ℎ 𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜, 𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗ℎ ; 𝑏𝑏𝑏𝑏0, 𝑏𝑏𝑏𝑏ℎ; 𝑓𝑓𝑓𝑓ℎ(. ), and 𝑓𝑓𝑓𝑓0(. ), respectively. The hidden layer and 
output layer operation is implemented using log-sigmoid and purelin 
transfer function, respectively.  
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Figure 3: RNARXNN design for SOC estimation 

 
 

3.0 LITHIUM-ION BATTERY EXPERIMENTS AND DATA 
DEVELOPMENT 

 

The experimental tests are conducted using NCR18650B lithium-ion 
batteries developed by Panasonic. Table 1 shows the specification of 
the Panasonic NCR18650B lithium-ion battery cell.  
 

Table 1: Specifications of LiNiCoAlO2 battery 
Type Nominal 

capacity (mAh) 
Nominal 

voltage (V) 
Cut-off 
voltage 

min/max (V) 

Specific 
Energy 

(Wh/kg) 

Cycle life 

LiNCA 3200 3.60 2.5/4.2 200-260 500 

 
3.1 Experimental Configuration 
 

A lithium-ion battery test bench model is developed which is divided 
into two parts, namely hardware part and software part, as displayed 
in Figure 4. The hardware part comprises a LiNiCoAlO2 battery and 
NEWARE BTS-4000. The software part includes BTS software version 
7.6 and MATLAB 2015a which are installed on the host computer. The 
control unit of NEWARE BTS-4000 is connected to a host computer 
through TCP/IP Port while BTS-4000 measurement unit is connected to 
the control unit through RS485 port.  
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Figure 4: Lithium-ion battery test bench model configuration 

 
3.2 Hybrid Pulse Power Characterization (HPPC) Test, DST and 

FUDS Drive Cycle 
 

HPPC test is a combination of sequence charge and discharge current 
pulses. The procedures of HPPC can be found in [14]. SOC is further 
evaluated using two commonly used EV drive cycles including 
dynamic stress test (DST), and federal urban drive schedule (FUDS). 
The complete duration of one drive cycle for DST, and FUDS cycles is 
estimated to be 360 s, and 1372 s, respectively [15]. 
 
 
4.0 SOC DATA PREPARATION AND PERFORMANCE 

ASSESSMENT INDICATORS 
 

After the algorithm development followed by the experimental data 
measurements, the whole dataset is separated into two subdivisions. 
The neural network-based SOC methods are trained using 70% data 
while the leftover unseen 30% data is used for SOC testing. Before the 
data training operation begins as referred in [11], data normalization is 
executed using the limit of [-1, 1] as shown in Equation (20) such as 
 

( )−
= −

−
min

max min

2
1

x x
x

x x
                                        (20) 

 
The maximum number of epochs during the training stage is set to be 
1000. The performance goal is fixed to be 0.000001. The proposed 
method is validated using numerous performance indicator terms as 
shown in Equations (21)-(26) [16]. 

=   -a esSOC error SOC SOC                                 (21) 
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where RMSE, MSE, MAE, MAPE and SD stand for root mean squared 
error, mean squared error, mean absolute error, mean absolute 
percentage error, and standard deviation, respectively. SOCa, SOCes 
and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒������������  denote the reference SOC value, estimated SOC value 
and average SOC error (SE), respectively.  
   
5.0 EXPERIMENTAL VERIFICATION AND 

PERFORMANCE COMPARISON 
 

SOC and SE calculation results are verified under three different cases. 
The first case is related to HPPC load profiles while the second and 
third cases are associated with the EV drive cycles including DST and 
FUDS. The experimental results for HPPC load profiles are illustrated 
in Figure 5. It is noticed that the difference between the SOC estimated 
by RNARXNN method and reference SOC is very small while SOC 
determined by BPNNN and RBFNN approaches is not aligned with the 
reference SOC. There is a drop of 61.2%, and 63.2% in RNARXNN 
method in comparison to BPNN, and RBFNN methods, respectively 
while assessing SD as shown in Table 2. 
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Figure 5: Lithium-ion battery SOC performance in case 1 under HPPC test:    
(a) SOC and (b) SOC error 

 
Table 2: SOC performance comparison in HPPC test 

Method RMSE (%) MSE (%) MAE (%) MAPE (%) SD (%) 
BPNN 1.3974 0.0195 0.4685 7.288 1.3977 
RBFNN 1.4744 0.0217 0.6217 10.7982 1.4748 
RNARXNN 0.5554 0.0031 0.2480 5.5931 0.5413 

 
SOC performance evaluation is also analyzed for DST drive cycle as 
indicated in Figure 6. The RMSE of the RNARXNN algorithm is 
computed to be 0.5347% which is 49.7%, and 56.6%, reduction from the 
BPNN, and RBFNN algorithms, respectively, as shown in Table 3. The 
results are also reported satisfactory in RNARXNN method towards 
assessing MSE, MAE, MAPE, and SD values. SOC is further tested 
using FUDS drive cycle as illustrated in Figure 7. 
 

  
(a)            (b) 

Figure 6: Lithium-ion battery SOC performance in case 2 under DST drive 
cycle: (a) SOC and (b) SOC error 

 
Table 3: SOC performance comparison in DST cycle 

Method RMSE (%) MSE (%) MAE (%) MAPE (%) SD (%) 
BPNN 1.0648 0.0113 0.7265 5.9903 1.0650 
RBFNN 1.2329 0.0152 0.8432 16.7005 1.2332 
RNARXNN 0.5347 0.0029 0.3519 4.1362 0.5259 
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MSE is reported high in BPNN and RBFNN algorithms, indicating 
0.0414% and 0.0578%, respectively while that for RNARXNN algorithm 
is 0.0038%, as shown in Table 4. 
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The effectiveness of three neural network algorithms is further 
analyzed based on SE and computational cost (CC), as shown in Table 
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RNARXNN algorithm is very low and restricted under 2%. Also, CC is 
computed to be very low in comparison to other two methods, 
indicating 2.8875 s. In Case 2, The RNARXNN algorithm achieves 
reasonable accuracy while reducing SE under 4%. Moreover, the CC is 
achieved to be 3.2615 s which is smaller than BPNN, and RBFNN 
algorithms. In case 3, The RNARXNN method also achieves good 
results with SE under 4%. The results are also excellent in terms of 
obtaining fast estimation speed with the CC of 4.3856 s.  
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The accuracy of the proposed RNARXNN method is compared with 
the existing model-based methods under EV drive cycles. It is reported 
that OCV [15], proportional integral observer (PIO) [17], and unscented 
particle filter (UPF) have RMSE above 1% while that for RNARXNN is 
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below 1% [18]. The results prove that RNARXNN method is more 
accurate and robust than existing SOC estimation approaches. 
 
 
6.0 CONCLUSION 

 

A comparative performance assessment of SOC estimation using 
neural network algorithms is presented. The neural network 
algorithms are validated by developing a battery test bench model and 
HPPC experiments. Besides, the robustness of the neural network 
algorithms is checked under two EV drive cycles. The results 
demonstrate that RNARXNN achieves better results than BPNN and 
RBFNN methods with regard to different error indicator terms. 
Besides, RNARXNN obtains SOC error under 2%, 4% and 4% in Case 
1, Case 2 and Case 3, respectively. Furthermore, RNARXNN computes 
RMSE below 1% in all three cases. Besides, the fast CC of SOC confirms 
the appropriateness and implementation of RNARXNN in a real-world 
environment. The future work includes the temperature effect and 
aging cycles to assess SOC. 
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