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ABSTRACT: The human body shows a non-linear and dynamic behavior 
under different vibration conditions that occur while travelling, walking and 
performing other activities.Thus, it becomes necessary to study effects on the 
human body that lead to different types of body pain and discomfort. In this 
study, an attempt has been made to find out natural frequencies and mode 
shapes of an Indian male subject in sitting posture without backrest using 
FEM approach. The results will be helpful in the designing of products for 
human use like automobile seats and machine parts to minimize the effect of 
vibrations on human body. A 3-D CAD model of human subject was generated 
using physical dimensions and anthropometric data available in the existing 
literature. A CAD model of the human body was segmented into a simple 
model using segments of ellipsoidal shape. As observed from this study, at 
2.8 Hz maximum deformation of 56 mm occurred at head segment and with 
the increase in natural frequency it started diverting to lower arms. At 18.7 Hz, 
maximum deformation (124 mm) occurred at lower arms of human subject.
Also, no deformation occurred at lower body segments below hip joint.The 
results obtained are in validation with the existing literature. 

KEYWORDS: Modal Analysis; Human Body; Natural Frequency; FEM; Sitting 
Posture 
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ABSTRACT: This study describes the temperature characteristics of a thin 
and compact linear switch reluctance motor (LSRM). The motor does not 
include bulky permanent magnets, resulting a thin and compact basic 
structure. However, it is important to examine the temperature characteristics 
of the LSRM due to temperature changes are considered as an undesirable 
condition in high-precision systems. Although various precision positioning 
and tracking experiments were carried out, the characteristics of temperature 
rise at the time of driving remains unclear. In order to know the extent of the 
temperature rise, the temperature of the stator coils by the motion control 
system was measured experimentally using thermography. Three 
experimental cases were conducted depending on the input signal. It is found 
that continuous motion longer than 30 s increases the temperature of the 
LSRM only by less than 3 °C. The experimental results indicate and highlight 
the key advantage of LSRMs that have less thermal problems compared with 
permanent magnet linear motors. 

 
KEYWORDS: Linear Switched Reluctance Motor; Thin; Disposable Mover; 
Temperature Characteristics; Precision Motion 

 
 

1.0 INTRODUCTION 
 

Electromagnetic linear motors are examples of linear drive 
mechanisms that have the capability to achieve high thrust 
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performance suitable for high-speed and high-precision system [1]. 
However, linear motors depend on permanent magnets (PMs), which 
have powerful attractive forces, thereby making assembly and 
disassembly difficult. A linear switched reluctance motor (LSRM) is 
free from the attractive force of the magnets and therefore, able to 
realize a thin and compact structure. Various configurations of LSRMs 
have been developed over the past few decades [2–6]. Although LSRMs 
have been studied for many applications such as elevators [7–10], 
railways [11–12], generator [13], automatic door [14–15], biomedical 
[16] and vehicle active suspension system [17], they are more suitable 
for compact direct drive mechanisms. Apart from the study on high-
precision performance [18–19], it is utmost important to examine the 
temperature characteristics of the LSRM [1]. This is because 
temperature changes are considered undesirable in high-precision 
systems. 
 
This paper describes the temperature characteristics of the developed 
LSRM using thermography. Although various precision tracking 
experiments were carried out previously [20], the temperature rise at 
the time of driving remains unclear. Therefore, the temperature rise 
during motion are examined experimentally. The remainder of this 
paper is organized as follows. In Section 2, the experimental setup and 
conditions are explained. Section 3 describes the temperature 
characteristic of the LSRM and its discussion. Finally, Section 4 presents 
the conclusions of this study. 
 
 
2.0 METHODOLOGY 

 
2.1 Experimental Setup 

 
In order to know the extent of the temperature rise at the time of 
driving, the temperature of the stator coils by the motion control 
system in [20] was measured using thermography. Figure 1 shows the 
schematic diagram of the experimental setup. A digital signal 
processing (DSP) system provided the driving signals to be applied to 
the commercial current amplifiers. These amplifiers are used to drive 
each phase of the coil. Simultaneously, the DSP system obtains the 
displacement of the mover from the linear encoder. In addition, an 
infrared camera is used to measure the temperature of stator coils. It is 
connected to a controller that stores the data and receives input from 
the console. Thermal images can also be viewed through the monitor 
in real-time. 
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Figure 1: Schematic diagram of the experimental setup 
 
Figure 2(a) shows the overall view of the experimental setup, while 
Figure 2(b) shows the zoomed view of the LSRM prototype and the 
thermography equipment. The mover used is the same as in previous 
study. It is placed on the sliding surface that is bonded with a low-
friction polytetrafluoroethylene (PTFE) film between the stator coils. 
The displacement of the mover is obtained using a linear encoder 
(Mercury II 5800 by GSI Group Inc.) mounted above the motor. 
Meanwhile, the temperature information is obtained using an infrared 
camera (FSV-2000, Apiste Corporation) at a frame rate of 5 frames per 
second (fps). An accurate digital room thermometer is placed near the 
experimental setup to measure the room temperature. 
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(a) 

 
(b) 

Figure 2: (a) Overall view of the experimental setup and (b) zoomed view of 
the LSRM prototype and the thermography equipment 

 
 
2.2  Experimental Conditions 

 
Figure 3(a) shows the field of view of the infrared camera. The field of 
view covers one side of stator coils where the three-phase coils (phases 
A, B and C) are located. A part of the coils is covered with high 
emissivity paint. The infrared camera is fixed at an angle to provide an 
accurate measurement of the temperature. As can be seen in Figure 
3(b), the temperature distribution among the coils is similar when the 
motor is not in operation.  
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(a) 

 
(b) 

Figure 3: (a) Field of view of the infrared camera and (b) measured 
temperature distribution 

 
 
3.0 RESULTS AND DISCUSSION 

 

Three experimental cases were conducted depending on the input 
signal. The stator coils were cooled to near room temperature before 
beginning each experiment. The room temperature was 24.5 °C. For the 
first two cases, the response to a sinusoidal input of 3 mm amplitude at 
0.25 Hz was measured. Figures 4(a) and 5(a) show the response of the 
motion control system running continuously for 6 and 30 s, 
respectively. As can be seen in Figures 4(b) and 5(b), the temperatures 
of the coils increased gradually to approximately 25 and 27 °C, 
respectively. They were increased gradually within the experimental 
period, or the period when the motion control system was running 
continuously. The temperature rise in the stator coils during motion is 
smaller than 3 °C. 

A C B’B A’ C’
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(a) 

 
(b) 

Figure 4: (a) Response of the motion control system for a sinusoidal input  
(3 mm, 0.25 Hz) running continuously for 6 s and (b) measured temperature 

by the thermography running continuously for 6 s 
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Figure 5: (a) Response of the motion control system for a sinusoidal input  
(3 mm, 0.25 Hz) running continuously for 30 s and (b) measured temperature 

by the thermography running continuously for 30 s 
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LSRM using the above-mentioned input. In contrast with the first two 
cases, the temperature rises to its maximum of approximately 36 °C 
within the experimental period resulting from such input signal for the 
worst case of operation. Overall, the temperature rise in the stator coils 
was about 12 °C and 4 times as large as that in coils during motion. 
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Figure 6: (a) Current responses of 3.33 A continuously applied to the coils 
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LSRM using the above-mentioned input. In contrast with the first two 
cases, the temperature rises to its maximum of approximately 36 °C 
within the experimental period resulting from such input signal for the 
worst case of operation. Overall, the temperature rise in the stator coils 
was about 12 °C and 4 times as large as that in coils during motion. 
 

 
(a) 

 
(b) 

Figure 6: (a) Current responses of 3.33 A continuously applied to the coils 
and (b) measured temperature by the thermography when a current of  

3.33 A was continuously applied to the coils 
 
Overall, continuous motion longer than 30 s increases the temperature 
of the LSRM only by less than 3 °C. It was reported that similar motion 
experiments increase the temperature by up to 6 °C using the moving 
PM linear synchronous motor [1]. The experimental results indicate 
and highlight the key advantage of LSRMs that have less thermal 
problems compared with PM linear motors. This is a result of their 
simple and robust construction without PMs [10]. 
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4.0 CONCLUSION  
 

In this paper, the temperature characteristics of a thin and compact 
LSRM was presented. As the temperature change is undesirable for the 
motor, as its use for high-precision positioning and motion, the 
temperature rise in the stator coils during motion were examined 
experimentally. The temperature distribution among the coils are well 
expected, having similar temperatures when the motor is in operation 
or not. During typical operation of the motor by the motion control 
system running continuously for 30 s, the temperature of the stator 
coils is less than 27 °C. Hence, the temperature rise in the stator coils 
during motion is only smaller than 3 °C. 
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