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1.0 INTRODUCTION 
 

Solid oxide fuel cells (SOFCs) are connected electrically in series with 
the help of an interconnect [1]. La-doped strontium titanates are known 
to be candidate materials for interconnects of segmented-in-series 
tubular SOFCs [2-3]. These materials show that their electrical 
conductivities gradually decrease at the operating temperatures of 
around 900°C with time [4]. There is a possibility that the decrease 
behavior of the conductivity is related to a second phase formation in 
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the perovskites. It is reported that second phases generate in 
Sr0.7La0.3TiO3 perovskite, which was synthesized by the solid-state 
reaction method, after annealing at 900°C for 2,000 hours [5]. It is also 
reported for Sr0.8La0.2TiO3 perovskite that second phases generates in at 
1100-1500°C even when the sample was prepared by the citric acid 
method [6-7]. However, compositions, structures, and formation 
mechanisms of the second phases are still unknown. Meyer et al. [8] 
reported the influence of high temperature oxygen annealing on (100)-
oriented (La,Sr)TiO3 and Sr(Ti,Nb)O3 single crystals. They proposed 
that the formation of Ruddlesden-Popper intergrowth phases SrO･
(SrTiO3)n [9] by a release of strontium from the perovskite lattice. Wei 
et al. [10] reported that annealing La-doped SrTiO3 single crystal in air 
at 1300°C for 120 hours resulted in the formation of insulating islands 
on the surface which were found to be stoichiometric SrO by means of 
some X-ray and electron spectroscopic techniques. It seemed certain 
that Sr-rich phases should be segregated from the perovskite matrix. 
Our group has been also reported that the second phase observed in 
Sr1-xLaxTiO3 with 0.2≤x≤0.4, when the oxide precursor prepared by a 
citric-gel method was fired at 1100-1500°C, was confirmed to be Sr-
doped La2O3 with the rare-earth oxide B-type structure [11]. This 
impurity phase was the same one as appeared in the La-doped SrTiO3 
during the SOFC operation [4]. 
 
In this paper, we examined deposition process of the second phase and 
detailed compositional analysis by means of SEM-EDX technique. 
 
 
2.0  METHODOLOGY  

 

La2O3 (Kojundo Chemical Laboratory Co., LTD, Japan, 99.9%, calcined 
at 1500°C for 1 hour prior to use), SrCO3 (Kojundo Chemical 
Laboratory Co., LTD, Japan, 99.9%, dried at 105°C for 48 hours), water-
soluble TAS-FINE ((NH4)4[Ti2(C6H4O7)2(O2)2], ammonium citratoperoxo 
titanate (IV), Furuuchi Chemical Corporation, Japan) were used as 
starting materials. The Ti content of TAS-FINE was determined 
quantitatively by thermo gravimetric (TG) measurement. Sr1-xLaxTiO3 
samples with x=0.3 were prepared as follows. TAS-FINE was dissolved 
in a solution mixture of ethylene glycol, citric acid, and distilled water. 
La2O3 and SrCO3 were weighted in a desired ratio and then added to 
the solution. This solution was heated to 200-300°C for 30 min to form a 
viscous gel, and this gel was dried at 380°C for 1 hour.  
 
The resulting gel was calcined at 600°C for 12 hours and well ground 
with an alumina mortar. The obtained powder was fired at 1000°C for 2 
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hours and was mixed in ethanol for 24 h by a ball milling technique. 
After drying, the powder was pressed into a pellet, and finally fired at 
1400°C for 1 hour up to 1 week. 
 
 
3.0  RESULTS AND DISCUSSION 
 

Figure 1 shows variation of X-ray diffraction patterns for Sr0.7La0.3TiO3 
prepared by citric-gel method as a function of firing duration at 1400°C. 
All the strong peaks could be assigned to the perovskite-type structure. 
At an early stage of sintering under 1400°C, the single phase of 
perovskite-type Sr0.7La0.3TiO3 was formed. However, a very small 
amount of impurity assigned to the rare-earth B-type La2O3 phase 
appeared and the amount increased with increasing the firing duration. 
The peak position assigned to the La2O3 seemed a slightly lower in 2θ 
than the reported value in the JCPDS 022-0641 shown in Figure 1, which 
will be described later. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: Variation of X-ray diffraction for Sr0.7La0.3TiO3 fired at 1400°C as a 
function of firing duration 
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In the middle of sintering, a small but broad peak at around 2θ=27.8° 
also appeared, which would correspond to the strongest peak of the 
rutile-type TiO2. It seems that TiO2 was released from the perovskite 
matrix at the same timing of exudence of La2O3. Finally, the released TiO2 
seemed to be incorporated again to the perovskite matrix but the exuded 
La2O3 still existed as an impurity phase. That means, the perovskite 
matrix should possess A-site deficiency, where the A-site means the site 
that the larger cation A should occupy when the perovskite-type oxide 
can be expressed as ABO3. In the previous papers, such an A-site 
deficiency is preferable for perovskite-type structure [7, 12]. The sintering 
characteristics were highly improved in the A-site deficient perovskites 
[7]. In other words, the progress in sintering of the perovskite matrix 
may promote the A-site deficiency. Thus the B-type La2O3 was 
dispersively deposited on the perovskite Sr0.7La0.3TiO3 matrix with a 
slight A-site deficiency probably. 
 
Figure 2 shows SEM image of Sr0.7La0.3TiO3 fired at 1400°C for 48 hours 
and its EDX spectra from selected areas of the bright impurity grain and 
the dark matrix grain. The impurity grain was bright because the 
constituent atoms would be those with the heavier atomic number in 
average, which is consistent with the fact that the phase of the impurity 
grain would be the rare-earth B-type La2O3. According to the EDX 
analysis, Ti was hardly detected whereas Sr and La was rich in the 
bright, impurity phase, the peaks of which can be seen in an energy 
region around 4.5keV.  From the results of XRD and EDX analyses, the 
second phase should be Sr-doped La2O3 phase with the rare-earth B-type 
structure. Peak shift toward the lower 2θ-side compared with the JCPDS 
data would be due to the larger ionic size of Sr2+ than La3+ [13]. 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 



Journal of Advanced Manufacturing Technology (JAMT)

18 eISSN: 2289-8107        Special Issue iDECON 2018

Journal ofAdvancedManufacturingTechnology (JAMT) 
 

 

 
(b)                                                            (c) 

 
Figure 2: (a) SEM image of Sr0.7La0.3TiO3 fired at 1400°C for 48 hours and its 

EDX spectra from selected areas: (b) bright impurity and (c) dark matrix  
 

Figure 3 shows SEM images of Sr0.7La0.3TiO3 fired at 1400°C for the 
given firing durations from 1 hour to 1 week.  As the firing period got 
longer, the average grain sizes increased.  Firing for 1 hour made the 
grain size still fine and homogenous, probably due to adopting citric-
gel technique in preparation.  Soft chemical techniques such as a citric-
gel method will be effective for obtaining homogeneous fine powders 
in a short duration fired at a low temperature [6-7, 11, 14-15].  Even in 
the sample fired for 5 hours, there were some small bright grains, 
which would be Sr-doped La2O3.  This fact is in consistent with the X-
ray results.  Once the segregation of Sr-doped La2O3 from the 
perovskite matrix occurred, the grain growth of the perovskite matrix 
was accelerated and the sintering proceeded so that some macro-pores 
between grains disappeared.  Long-term firing at 1400°C led to further 
sintering of the grains, seen from change in the surface morphology 
from round grains to angulated, flat grains but to anew creation of 
macro-pores between grains. 
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Figure 3 shows SEM images of Sr0.7La0.3TiO3 fired at 1400°C for the 
given firing durations from 1 hour to 1 week.  As the firing period got 
longer, the average grain sizes increased.  Firing for 1 hour made the 
grain size still fine and homogenous, probably due to adopting citric-
gel technique in preparation.  Soft chemical techniques such as a citric-
gel method will be effective for obtaining homogeneous fine powders 
in a short duration fired at a low temperature [6-7, 11, 14-15].  Even in 
the sample fired for 5 hours, there were some small bright grains, 
which would be Sr-doped La2O3.  This fact is in consistent with the X-
ray results.  Once the segregation of Sr-doped La2O3 from the 
perovskite matrix occurred, the grain growth of the perovskite matrix 
was accelerated and the sintering proceeded so that some macro-pores 
between grains disappeared.  Long-term firing at 1400°C led to further 
sintering of the grains, seen from change in the surface morphology 
from round grains to angulated, flat grains but to anew creation of 
macro-pores between grains. 
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perovskite matrix occurred, the grain growth of the perovskite matrix 
was accelerated and the sintering proceeded so that some macro-pores 
between grains disappeared.  Long-term firing at 1400°C led to further 
sintering of the grains, seen from change in the surface morphology 
from round grains to angulated, flat grains but to anew creation of 
macro-pores between grains. 
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Figure 3: SEM images of Sr0.7La0.3TiO3 fired at 1400℃ for the given firing 
durations from 1 hour to 1 week 

 
 

4.0  CONCL U S ION  
 

The second phase deposited on the perovskite-type Sr0.7La0.3TiO3 matrix 
after firing at 1400°C was found to be the rare-earth B-type La2O3 
containing Sr.  This impurity should be identical with that appears at an 
operating temperature of SOFC around 900°C. The deposition of Sr-
doped La2O3 would proceed so that the A-site site deficiency was created 
in Sr0.7La0.3TiO3. 
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