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ABSTRACT: A Phase-locked loop (PLL) is a basic control system that attempts 
to produce an output waveform that can match with the input reference signal 
in the shortest time possible. A filter is one of the main components in the 
PLL blocks, and it plays a very important role to determine the range of input 
frequency that can ensure the system stays in a locked condition. This paper 
focuses on designing a fixed-pole active PI filter which is suitable for high-
frequency PLL-based circuits such as those used in clock generators. As PLL 
is bound to fall out of lock due to the nonlinear effects from its phase detector, 
a new approach is introduced in this work which is to combine the linear and 
nonlinear control method to ensure stability. Having had the phase margin 
specified a priori, it is shown by simulation that the allowable range of input 
frequency such that the system remains locked can be expanded.  
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1.0 INTRODUCTION 

The basic function of a PLL system is to ensure that the phase and 
frequency of the output signal are equivalent to those of the input signal. 
The PLL system is fundamental to many electronic circuits used for 
frequency control such as clock synchronization and distribution [1]. It 
is also commonly used in a telecommunication system for modulation/
demodulation and frequency synthesizer [2-3]. With the technology 
advancement in the electronic system, advanced development of the 
PLL circuit was successfully implemented on a single integrated chip 
(IC) back in the year 1965 [4].  Since then, the demand for this type 
of IC design with higher performance captures the attention of many 
researchers [5-6]. The PLLs have also been used for high-frequency 
application [7-9] which include clock generators for microprocessors of 
which the operation frequencies start at 100MHz and above [10]. 
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The PLL structure usually consists of a phase detector (PD), loop 
filter (LF), and voltage controlled oscillator (VCO) [11]. Each of these 
blocks has an important role to ensure the system functions accurately 
according to the desired specifications. The performance of the PLL 
system which is usually indicated by the locking range and settling time 
also depends on the parameters of the filter [12]. Three basic filter types 
mostly used in PLL design are passive, active and proportional integral 
(PI) filters. Another important parameter that can be considered in the 
filter design is phase margin. Few studies which discuss the impact of 
the phase margin on loop response can be found in [13-15].

As most PLL systems are nonlinear due to the effects from the PD and 
VCO [16–19], extensive studies regarding their stability and working 
frequency range have been carried out since the past few decades  [20–
23]. These include classical graphical techniques [20], LaSalle theorem 
[21] and Lyapunov redesign [22]. For nonlinearities that can be 
categorized as sector- and slope-bounded, the circle and Popov criteria 
can provide sufficient stability conditions for the closed-loop systems 
under certain assumptions [23].  

In this paper, an alternative method is proposed to design a fixed-pole 
second order active PI filter for nonlinear PLL by combining linear and 
nonlinear design approaches. In this new method, we use the H_∞ 
control technique where the phase margin is specified a priori. The 
performance of the nonlinear PLL system in terms of locking range and 
locking time is then compared with the filter designed when the phase 
margin is allowed to take any values. 

2.0 METHODOLOGY

Assuming all high frequency components have been attenuated, the 
resulting block diagram of PLL in phase domain can be illustrated in 
Figure 1.
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Figure 1: General block diagram for a linear PLL model in phase domain [24] 
 
The transfer function of the closed-loop PLL without considering 
nonlinearity can be written as: 
 

𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠) =
𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠)

𝑠𝑠𝑠𝑠 + 𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠)
 (1) 

 
where the 𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑 and 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣 is the PD gain (volts/rad) and VCO gain (rad/volt 
second) respectively. Whereas F(s) is the filter’s transfer function 
which takes the form:  
 

𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠) =
𝐾𝐾𝐾𝐾0𝑠𝑠𝑠𝑠2 + 𝐾𝐾𝐾𝐾1𝑠𝑠𝑠𝑠 + 𝐾𝐾𝐾𝐾2

𝑠𝑠𝑠𝑠2
 (2) 

 
which is also known as fixed-pole active PI filter. To ensure the 
stability of the PLL system in the linear region, sufficient gain or 
phase margins must be preserved. The phase margin ∅m (in degree) 
can be determined by the parameter γ as follows [25]: 
 
 

 �
𝐻𝐻𝐻𝐻(𝑠𝑠𝑠𝑠)

1 + 𝐻𝐻𝐻𝐻(𝑠𝑠𝑠𝑠)�
< 𝛾𝛾𝛾𝛾 

 
(3) 

 
where 𝐻𝐻𝐻𝐻(𝑠𝑠𝑠𝑠) is the open loop transfer function of the PLL system. The 
useful relationship between phase margin ∅𝑚𝑚𝑚𝑚 and γ can be 
approximated by the following equation: 
 

𝛾𝛾𝛾𝛾 ≈
1

2sin (0.5∅𝑚𝑚𝑚𝑚)
 (4) 

 
The closed-loop system in Figure 1 can be restructured into Figure 2, 
with the state space system P written as: 

Figure 1: General block diagram for a linear PLL model in phase 
domain [24]
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The transfer function of the closed-loop PLL without considering 
nonlinearity can be written as:
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where the Kd and Kv is the PD gain (volts/rad) and VCO gain (rad/volt 
second) respectively. Whereas F(s) is the filter’s transfer function which 
takes the form:
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Figure 2: General block diagram for H∞ synthesis 
 
The following method can then be applied: 
 
Lemma 1: 𝐻𝐻𝐻𝐻∞  approach [25]. 
Given an LTI system 𝑀𝑀𝑀𝑀�(𝑠𝑠𝑠𝑠) = 𝐶𝐶𝐶𝐶(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐴𝐴𝐴𝐴)−1𝐵𝐵𝐵𝐵 + 𝐷𝐷𝐷𝐷.  Then the following 
statements are equivalent:  
 
 i.    𝐴𝐴𝐴𝐴 is Hurwitz stable and �𝑀𝑀𝑀𝑀�(𝑠𝑠𝑠𝑠)�∞ < 𝛾𝛾𝛾𝛾. 

ii. There exists a positive definite matrix 𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 such that the 
following LMI hold.  

 

�
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵1 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇

𝐵𝐵𝐵𝐵1𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 −𝛾𝛾𝛾𝛾𝑠𝑠𝑠𝑠 𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇

𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷 −𝛾𝛾𝛾𝛾𝑠𝑠𝑠𝑠
� ≤ 0 

(8) 

 
 In order to ensure stability of the PLL when it is subjected to the nonlinear 
effect from the PD, the nonlinear function needs to be included as 
shown in Figure 3. It is then straightforward to rearrange the loop into 
the so-called Lur’e system [26] which is suitable for application of the 
circle criterion. Assuming the nonlinearity 
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Figure 1: General block diagram for a linear PLL model in phase domain [24] 
 
The transfer function of the closed-loop PLL without considering 
nonlinearity can be written as: 
 

𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠) =
𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠)

𝑠𝑠𝑠𝑠 + 𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠)
 (1) 

 
where the 𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑 and 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣 is the PD gain (volts/rad) and VCO gain (rad/volt 
second) respectively. Whereas F(s) is the filter’s transfer function 
which takes the form:  
 

𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠) =
𝐾𝐾𝐾𝐾0𝑠𝑠𝑠𝑠2 + 𝐾𝐾𝐾𝐾1𝑠𝑠𝑠𝑠 + 𝐾𝐾𝐾𝐾2

𝑠𝑠𝑠𝑠2
 (2) 

 
which is also known as fixed-pole active PI filter. To ensure the 
stability of the PLL system in the linear region, sufficient gain or 
phase margins must be preserved. The phase margin ∅m (in degree) 
can be determined by the parameter γ as follows [25]: 
 
 

 �
𝐻𝐻𝐻𝐻(𝑠𝑠𝑠𝑠)

1 + 𝐻𝐻𝐻𝐻(𝑠𝑠𝑠𝑠)�
< 𝛾𝛾𝛾𝛾 

 
(3) 

 
where 𝐻𝐻𝐻𝐻(𝑠𝑠𝑠𝑠) is the open loop transfer function of the PLL system. The 
useful relationship between phase margin ∅𝑚𝑚𝑚𝑚 and γ can be 
approximated by the following equation: 
 

𝛾𝛾𝛾𝛾 ≈
1

2sin (0.5∅𝑚𝑚𝑚𝑚)
 (4) 

 
The closed-loop system in Figure 1 can be restructured into Figure 2, 
with the state space system P written as: 

(y) is static, memoryless, 
and it satisfies the sector bounded as described by:
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In order to ensure stability of the PLL when it is subjected to the 
nonlinear effect from the PD, the nonlinear function needs to be 
included as shown in Figure 3. It is then straightforward to rearrange 
the loop into the so-called Lur’e system [26] which is suitable for 
application of the circle criterion. Assuming the nonlinearity ∅(𝑦𝑦𝑦𝑦) is 
static, memoryless, and it satisfies the sector bounded as described by: 
 

0 ≤
∅(𝑦𝑦𝑦𝑦)
𝑦𝑦𝑦𝑦

≤ 𝐾𝐾𝐾𝐾,      ∀𝑦𝑦𝑦𝑦 ≠ 0 (9) 

 
The following criterion can be applied: 
 
Lemma 2: Circle Criterion [27]. 
Consider the system in Figure 3 and define 𝑀𝑀𝑀𝑀� = 𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠) 𝑠𝑠𝑠𝑠⁄ =
𝐶𝐶𝐶𝐶(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐴𝐴𝐴𝐴)−1𝐵𝐵𝐵𝐵 + 𝐷𝐷𝐷𝐷, and ∅ satisfying the sector given by Equation (8). 
The closed-loop system is absolutely stable if A is Hurwitz and the 
𝑀𝑀𝑀𝑀�(𝑠𝑠𝑠𝑠) lies on the right-half plane of the Nyquist plot defined of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅[𝑠𝑠𝑠𝑠] =
−1/𝐾𝐾𝐾𝐾 such as 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�1 + 𝐾𝐾𝐾𝐾𝑀𝑀𝑀𝑀�(𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)� > 0,     ∀𝑗𝑗𝑗𝑗 ∈ ℝ (10) 
 
By using Kalman-Yakubovich-Popov (KYP) Lemma [28], the 
frequency domain from the Equation (10) can be transformed into an 
LMI form given by: 
 

�𝐴𝐴𝐴𝐴
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 − 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇
𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 − 𝐶𝐶𝐶𝐶 −2𝐾𝐾𝐾𝐾�−1

� ≤ 0 (11) 

 
By integrating Lemmas 1 and 2, the proposal of a method to design 
the filter as follows: 
 
Proposed method: Consider the fixed-pole an active PI filter as in 
Equation (2) and let  𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿 = [𝐾𝐾𝐾𝐾0 𝐾𝐾𝐾𝐾1 𝐾𝐾𝐾𝐾2]. Given 𝛾𝛾𝛾𝛾 > 0, if Equations 
(12)-(14) are feasible, 
 

 𝑿𝑿𝑿𝑿 > 0, (12) 
 

�𝑿𝑿𝑿𝑿𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎
𝑇𝑇𝑇𝑇 + 𝑾𝑾𝑾𝑾𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵2𝑇𝑇𝑇𝑇 + 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑿𝑿𝑿𝑿+ 𝐵𝐵𝐵𝐵2𝑾𝑾𝑾𝑾 𝐵𝐵𝐵𝐵1 −𝑾𝑾𝑾𝑾𝑇𝑇𝑇𝑇

𝐵𝐵𝐵𝐵1𝑇𝑇𝑇𝑇 −𝑾𝑾𝑾𝑾 −2𝐾𝐾𝐾𝐾�−1
� ≤ 0, (13) 

 
 

�
𝑿𝑿𝑿𝑿𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇 + 𝑾𝑾𝑾𝑾𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵2𝑇𝑇𝑇𝑇 + 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑿𝑿𝑿𝑿+ 𝐵𝐵𝐵𝐵2𝑾𝑾𝑾𝑾 𝐵𝐵𝐵𝐵1 𝑾𝑾𝑾𝑾𝑇𝑇𝑇𝑇

𝐵𝐵𝐵𝐵1𝑇𝑇𝑇𝑇 −𝛾𝛾𝛾𝛾𝑠𝑠𝑠𝑠 0
𝑾𝑾𝑾𝑾 0 −𝛾𝛾𝛾𝛾𝑠𝑠𝑠𝑠

� ≤ 0 
(14) 

The following criterion can be applied:
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In order to ensure stability of the PLL when it is subjected to the 
nonlinear effect from the PD, the nonlinear function needs to be 
included as shown in Figure 3. It is then straightforward to rearrange 
the loop into the so-called Lur’e system [26] which is suitable for 
application of the circle criterion. Assuming the nonlinearity ∅(𝑦𝑦𝑦𝑦) is 
static, memoryless, and it satisfies the sector bounded as described by: 
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By using Kalman-Yakubovich-Popov (KYP) Lemma [28], the 
frequency domain from the Equation (10) can be transformed into an 
LMI form given by: 
 

�𝐴𝐴𝐴𝐴
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 − 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇
𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 − 𝐶𝐶𝐶𝐶 −2𝐾𝐾𝐾𝐾�−1

� ≤ 0 (11) 

 
By integrating Lemmas 1 and 2, the proposal of a method to design 
the filter as follows: 
 
Proposed method: Consider the fixed-pole an active PI filter as in 
Equation (2) and let  𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿 = [𝐾𝐾𝐾𝐾0 𝐾𝐾𝐾𝐾1 𝐾𝐾𝐾𝐾2]. Given 𝛾𝛾𝛾𝛾 > 0, if Equations 
(12)-(14) are feasible, 
 

 𝑿𝑿𝑿𝑿 > 0, (12) 
 

�𝑿𝑿𝑿𝑿𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎
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𝐵𝐵𝐵𝐵1𝑇𝑇𝑇𝑇 −𝑾𝑾𝑾𝑾 −2𝐾𝐾𝐾𝐾�−1
� ≤ 0, (13) 

 
 

�
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𝐵𝐵𝐵𝐵1𝑇𝑇𝑇𝑇 −𝛾𝛾𝛾𝛾𝑠𝑠𝑠𝑠 0
𝑾𝑾𝑾𝑾 0 −𝛾𝛾𝛾𝛾𝑠𝑠𝑠𝑠

� ≤ 0 
(14) 
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In order to ensure stability of the PLL when it is subjected to the 
nonlinear effect from the PD, the nonlinear function needs to be 
included as shown in Figure 3. It is then straightforward to rearrange 
the loop into the so-called Lur’e system [26] which is suitable for 
application of the circle criterion. Assuming the nonlinearity ∅(𝑦𝑦𝑦𝑦) is 
static, memoryless, and it satisfies the sector bounded as described by: 
 

0 ≤
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≤ 𝐾𝐾𝐾𝐾,      ∀𝑦𝑦𝑦𝑦 ≠ 0 (9) 

 
The following criterion can be applied: 
 
Lemma 2: Circle Criterion [27]. 
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By integrating Lemmas 1 and 2, the proposal of a method to design 
the filter as follows: 
 
Proposed method: Consider the fixed-pole an active PI filter as in 
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� ≤ 0 
(14) 
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By using Kalman-Yakubovich-Popov (KYP) Lemma [28], the frequency 
domain from the Equation (10) can be transformed into an LMI form 
given by:
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By integrating Lemmas 1 and 2, the proposal of a method to design the 
filter as follows:

Proposed method: Consider the fixed-pole an active PI filter as in 
Equation (2) and let KL=[K0 K1 K2]. Given γ>0, if Equations (12)-(14) are 
feasible,
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then the filter can be obtained by 
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Proof: Perform congruence transformation by pre- and post-
multiplying of inequality Equation (13) by T = diag(X−1, I), and 
Equation (14) by T = diag(X−1, I, I), where X = P−1, with a change of 
variable W = KLX, Equations (10)  and (11) is obtained respectively.  
 
Remark 1: Without specifying γ a priori, an optimal filter may be 
obtained if Equations (12)-(14) are feasible by minimizing the 
parameter. In this case, we denote the method as method 1 for 
comparisons in the simulation results section.  
 
3.0  SIMULATION RESULTS 
 

The simulation of nonlinear PLL system is analyzed in phase domain 
model as shown in Figure 3. The nonlinearities from the PD can be 
characterized by a sine-wave or a triangular-wave such as 
 

∅(. ) = sin (𝜃𝜃𝜃𝜃𝑒𝑒𝑒𝑒) (15) 
 
for the sine-wave; and for the triangular-wave [29]. 
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Figure 3: Nonlinear PLL system in phase domain 

 
By setting the VCO gain, 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣 = 1, and PD gain, 𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑 = 1, the parameters 
of the second order active PI filter obtained by using proposed 
method are given in Table 1. The results are compared with the 
designed filter via method 1. 
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Figure 3: Nonlinear PLL system in phase domain

By setting the VCO gain, Kv=1, and PD gain, Kd=1, the parameters of 
the second order active PI filter obtained by using proposed method 
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The simulation results for step response (1Hz, 400MHz, and 500MHz) 
of the nonlinear PLL system with the designed filter via the proposed 
method and method 1 are shown in Figure 5. From the figure, at low 
input frequency of 1Hz, the step response for designed filter via the 
proposed method produced small overshoot. However, when the 
frequency was higher, no overshoot was observed. When the frequency 
was increased to 500MHz, it showed that the designed filter via method 
1 failed to track the input, while the designed filter via the proposed 
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method remained locked. From the same graph, it can be easily seen 
that the steady state response for the designed filter via proposed 
method is much faster than method 1. 
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Figure 4: Bode plot for closed-loop linear PLL system with designed 
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The locking range and settling time for the designed filter via the 
proposed method and method 1 are summarized in Table 2. The 
results are also compared with the nonlinearity from the sine-wave and 
triangular-wave PD. From the tabulated table, the locking range for the 
PLL system with the designed filter via the proposed method for both 
types of nonlinearities is larger than method 1. However, the settling 
times for both the designed filter via the proposed method and method 
1 with sine-wave PD are much faster than the triangular-wave PD.

Table 2: The locking range(ωL) and settling time (ts)  for nonlinear PLL 
system using triangular and sine-wave PDs for the proposed method 

and method 1
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Figure 5: Step response for nonlinear PLL system with designed filter via 
proposed method and method 1 at frequencies (a) 1Hz, (b) 400MHz and  

(c) 500MHz using triangular-wave PD 
 

4.0  CONCLUSION 
 

In this paper, a new technique to design a fixed-pole active PI filter for 
nonlinear PLL system is presented. Based on the simulation results, 
the designed filter via the proposed method offers more advantages in 
terms of locking range and settling time as compared to method 1. 
This type of filter design is suitable for clock generator on electronic 
board application, which requires a frequency range of 100MHz and 
beyond. For future work, other values of phase margins can be 
considered to satisfy the PLL design for other types of applications 
with different performance specifications.  
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4.0  CONCLUSION

In this paper, a new technique to design a fixed-pole active PI filter for 
nonlinear PLL system is presented. Based on the simulation results, 
the designed filter via the proposed method offers more advantages in 
terms of locking range and settling time as compared to method 1. This 
type of filter design is suitable for clock generator on electronic board 
application, which requires a frequency range of 100MHz and beyond. 
For future work, other values of phase margins can be considered to 
satisfy the PLL design for other types of applications with different 
performance specifications. 
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