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ABSTRACT: To date, there are only a few reports evaluating non-thermal 
alternating current electromagnetic exposure for medical therapeutic 
applications. Here, we analyzed the acute effects of hand and forearm exposure 
to a 50 Hz electromagnetic field (EMF; peak magnetic flux density Bmax 180 mT, 
Brms 127 mT, 15-min duration of exposure) on cutaneous microcirculation in 11 
healthy human subjects (10 males and 1 female, age betwen 22-57 years). The 
blood flow volume values in the back of the hand were monitored and analyzed 
using a 2D laser speckle flowmetry. Regional blood flow volume values in 
sham control exposure were significantly reduced from baseline values 
during resting conditions. In contrast, the EMF exposure did not significantly 
decreased the blood flow volume from the baseline values during and after the 
EMF exposure period. There were significant differences between the EMF and 
sham exposure groups. Therefore, the EMF exposure significantly prevented 
the reduction of blood flow volume. Thus, the EMF could improve blood flow 
volume in cutaneous tissue under ischemic conditions. These findings imply 
that the physiological role of an EMF-enhanced blood circulation might help 
eliminate the metabolic waste products including endogenous pain producing 
substances inducing muscle hardness and pain.  
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1.0 INTRODUCTION 

A number of studies have been conducted to investigate the biological 
and health effects on extremely low frequency electromagnetic fields 
(ELF-EMF) in the range of 1 to 300 Hz, and the exposure systems for 
medical treatment applications have been evaluated and reviewed 
[1-2]. ELF-EMF therapy with low frequency of pulsed EMF has been 
proposed by clinicians as alternative medicine for various applications 
including reducing pain, improving blood circulation, bone repair, 
wound healing, insomnia improvement, and reduction of arthritis [3]. 
Nevertheless, the mechanisms of action of EMF therapy have not  been 
well understood.

Regarding improving blood circulation, we showed evidence that acute 
and local exposure to an alternating current (AC)  EMF (50 Hz, Bmax 180 
mT, Brms 127 mT, 15-min duration of exposure) significantly increased 
the blood flow velocity in an artery relative to the sham control (CTL) 
exposure [4]. These EMF effects seem to be dose dependent manner and 
moreover may depend on the parts of the body. However, the effects 
of EMF on blood flow volume itself have not examined. To extend the 
previous study, we attempted to investigate the acute effects of EMF 
exposure on cutaneous microcirculation in healthy human adults.

2.0 METHODOLOGY

2.1 Subjects

Healthy volunteers (10 males, 1 female, age range 22-57 years, heights 
158-175 cm and weights 52-65 kg) participated in the present study. 
All study procedures were reviewed and approved by the Institutional 
Review Board of Saitama University. All subjects signed informed 
consent before any study procedures were performed. During the 
study period, subjects did not use any form of physical therapy and did 
not take any vasoactive medication. Subjects’ body temperature, and 
systolic and diastolic blood pressures were within normal ranges. All 
trials were carried out during daytime (11:00 a.m.–17:00 p.m.) at room 
temperature of 25±0.5°C and relative humidity of 50±10%.
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2.2 Study Protocol

The study protocol is shown in Figure 1. Monitoring of cutaneous 
microcirculation in the back of the right hand was conducted under 
hand and forearm exposures to 50 Hz EMF (Bmax 180 mT, Brms 127 mT). 
The blood flow volume values analyzed from the microcirculation 
images were compared with two different exposures namely, EMF 
exposure and sham control (CTL) exposure. In a randomized, double 
blind and crossover study design, EMF and sham exposure experiments 
were carried out by switching on and off an AC EMF exposure device. 
The initiation of monitoring of blood flow volume was done after more 
than 10-min rest with sitting position. 
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Figure 1: Study protocol for hand and forearm exposures  

 
The microcirculation images were recorded and analyzed at 5-min 
intervals for 30 min using a 2D laser speckle flowmetry (Omegazone 
OZ-3, Omegawave, Fuchu, Tokyo, Japan). The EMF or sham exposure 
was performed continuously for 15 min. For hand and forearm 
exposures, the ventral side of the right hand and forearm were 
positioned on an EMF exposure device for 30 min to keep the arm 
motionless as long as possible during the clinical trial in each 
individual as shown in Figure 2. 
 

 
Figure 1: Study protocol for hand and forearm exposures 

The microcirculation images were recorded and analyzed at 5-min 
intervals for 30 min using a 2D laser speckle flowmetry (Omegazone OZ-
3, Omegawave, Fuchu, Tokyo, Japan). The EMF or sham exposure was 
performed continuously for 15 min. For hand and forearm exposures, 
the ventral side of the right hand and forearm were positioned on an 
EMF exposure device for 30 min to keep the arm motionless as long as 
possible during the clinical trial in each individual as shown in Figure 
2.
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Figure 2: Photograph of hand and forearm exposures using an AC EMF 

exposure device 
 
2.3 AC EMF Exposure Device 
 

In this research, 50 Hz EMF exposure was conducted using an AC 
EMF exposure device (Soken MS, Toride, Ibaraki, Japan), which has 
two separate magnetic coils inside the device. The value of peak 
magnetic flux density Bmax is 180 mT and Brms is 127 mT on the surface 
of the EMF exposure device above the center of the coils. The spatial 
distribution of the Bmax from the surface of the EMF exposure device is 
shown in Figure 3. 
 

 
Figure 3: Spatial distribution of the peak magnetic flux density Bmax values 

along the z-direction 
 

The magnetic flux density values of AC EMF decrease exponentially 
with distance. The estimated Bmax values of the measurement points in 
the dorsal skin surface of hand and fingers are approximately 5 mT 
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Figure 3: Spatial distribution of the peak magnetic flux density Bmax 

values along the z-direction

The magnetic flux density values of AC EMF decrease exponentially 
with distance. The estimated Bmax values of the measurement points 
in the dorsal skin surface of hand and fingers are approximately 5 mT 
and 6 mT, in which the distances from the surface Bmax 180 mT of the 
EMF exposure device are approximately 6 cm and 5 cm, respectively, 
as shown in Figure 2.
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The measurement of root mean square (rms) values (a) was made 
by means of a Hall probe magnetometer in AC mode (AC/DC 
Magnetometer, AlphaLab, Salt Lake City, UT, USA). Here, the Bmax 

values (b) of AC EMF were calculated from the measured Brms values (a) 
using the following equation: 
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The principle of laser speckle flowmetry has been reported in detail 
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camera. The fluctuation in every pixel in a certain time is important to 
calculate blood flow volume values in every pixel. When the number 
density of red blood cells (RBCs) in tissue increases, many scattered 
light will be detected and the deviation of the averaged electric charge 
of the CCD pixel become slower. Compared with the Doppler 
flowmetry mechanism, this 2D laser speckle blood imager shows 
higher blood flow volume values when the deviation of the detected 
light intensity is smaller. The reduced speckle image indicates the 
highest level of blood flow that can be measured over the entire area 
of tissue for a given CCD camera integration time, as a reference to 
quantify regional blood flow in the captured speckle image. Lower 
blood flow regions of the tissue have a greater speckle structure, 
while higher flow regions show less structure approaching a complete 
reduction of speckle with sufficient flow. Thus, we know that the 
volume of blood flowing under the skin is increased when the 
integrated electric charge of a CCD pixel keeps decreasing over time 
as shown in Figure 4.  
 
The incident and receiving points are separated, and the distribution 
of light intensity in the tissue is a function of the distance of the fiber 
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camera. The fluctuation in every pixel in a certain time is important to 
calculate blood flow volume values in every pixel. When the number 
density of red blood cells (RBCs) in tissue increases, many scattered 
light will be detected and the deviation of the averaged electric charge of 
the CCD pixel become slower. Compared with the Doppler flowmetry 
mechanism, this 2D laser speckle blood imager shows higher blood 
flow volume values when the deviation of the detected light intensity is 
smaller. The reduced speckle image indicates the highest level of blood 
flow that can be measured over the entire area of tissue for a given CCD 
camera integration time, as a reference to quantify regional blood flow 
in the captured speckle image. Lower blood flow regions of the tissue 
have a greater speckle structure, while higher flow regions show less 
structure approaching a complete reduction of speckle with sufficient 
flow. Thus, we know that the volume of blood flowing under the skin 
is increased when the integrated electric charge of a CCD pixel keeps 
decreasing over time as shown in Figure 4. 

The incident and receiving points are separated, and the distribution 
of light intensity in the tissue is a function of the distance of the fiber 
laser flowmeter. Thus, the relative measurement depth depends on the 
distance between the incident point and the receiving point. However, 
the laser light is illuminated over a wide area, and the pixels detect 
scattered light from the same point as the illumination point of the 2D 
laser speckle blood flow imager. In a fiber-optic laser blood flow meter, 
the incident point and the light receiving point are at the same point, 
which is the same as the measurement depth becoming shallow. The 
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measured depth of human skin is assumed to be less than about 1 mm 
from the surface [7].
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According to the instruction manual of a 2D laser speckle flowmetry, a 
black sponge sheet made of a chloroprene rubber foam (C4305, INOAC 
Nagoya, Aichi, Japan) was spread under the right hand and forearm 
to obtain clear blood flow images. The black sheet does not reflect 
the laser light, and the effect makes the blood flow images clear. The 
whole sequential 10 images in the back of the right hand for 10 seconds 
were captured by the pixel of the CCD camera simultaneously in high 
resolution mode (1 image/sec with image resolution 750 × 560). After 
recording the images, three measurement points such as f1 is a nail of 
index finger (diameter 1.32 cm with 50 pixels), f2 is a nail of ring finger 
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Statistical analysis of differences in mean values of EMF and CTL 
groups was made by using the Wilcoxon rank-sum test (between 
groups) and the Wilcoxon paired signed rank test (within a group) for 
non-parametric data. For all comparisons, a P value less than 0.05 was 
considered significant. 
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3.1 The Effects of EMF Exposure on Cutaneous Microcirculation 
 

Blood flow volume values of 11 individuals were measured 1 to 3 
times for EMF and sham exposure experiments, and mean values 
were calculated for each individual. Because the variability of baseline 
values is so great among individuals, we analyzed the change rate (%) 
of blood flow volume from baseline values. This can be associated 
with slight body movements over times. The results of blood flow 
volume values in the back of the right hand were shown in Figure 6. 
Moreover, the color zone indicates 15 minutes duration of EMF or 
sham exposure. Values are expressed as mean ± SEM (n = 11 in each 
group).  
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2.5 Statistical Analysis

Statistical analysis of differences in mean values of EMF and CTL 
groups was made by using the Wilcoxon rank-sum test (between 
groups) and the Wilcoxon paired signed rank test (within a group) for 
non-parametric data. For all comparisons, a P value less than 0.05 was 
considered significant.

3.0 RESULTS AND DISCUSSION

3.1 The Effects of EMF Exposure on Cutaneous Microcirculation

Blood flow volume values of 11 individuals were measured 1 to 3 
times for EMF and sham exposure experiments, and mean values 
were calculated for each individual. Because the variability of baseline 
values is so great among individuals, we analyzed the change rate (%) 
of blood flow volume from baseline values. This can be associated with 
slight body movements over times. The results of blood flow volume 
values in the back of the right hand were shown in Figure 6. Moreover, 
the color zone indicates 15 minutes duration of EMF or sham exposure. 
Values are expressed as mean ± SEM (n = 11 in each group).
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Figure 6: The time course of the change rate of blood flow volume in EMF 

exposure and sham control (CTL) exposure groups: A is a nail of index 
finger, B is a nail of ring finger and C is a central part of hand  

(*P < 0.05; **P < 0.01 compared with the baseline (within a group) and  
#P < 0.05; ##P < 0.01 compared with the CTL (between groups)) 

 
Blood flow volume values in the CTL group decreased significantly 
from baseline values (shown as 100%) during resting conditions. For 
this reason, for example, the blood flow volume was reduced by the 
immobility of  the  hand thereby inducing an ischemic condition [8]. 
 
In contrast, EMF exposure did not significantly reduce blood flow 
volume from baseline values during and after the EMF exposure 
period. There were significant differences between EMF and CTL 
groups. Thus, EMF exposure significantly prevented the decrease in 
blood flow volume. Together with the previous results of the 
increased blood flow velocity induced by EMF [4], we speculate on 
the following mechanism. 
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Blood flow volume values in the CTL group decreased significantly 
from baseline values (shown as 100%) during resting conditions. For 
this reason, for example, the blood flow volume was reduced by the 
immobility of  the  hand thereby inducing an ischemic condition [8].

In contrast, EMF exposure did not significantly reduce blood flow 
volume from baseline values during and after the EMF exposure 
period. There were significant differences between EMF and CTL 
groups. Thus, EMF exposure significantly prevented the decrease in 
blood flow volume. Together with the previous results of the increased 
blood flow velocity induced by EMF [4], we speculate on the following 
mechanism.

3.2 Plausible Biophysical Mechanism of AC EMF for 
Hemodynamics

Transcranial magnetic stimulation (TMS) has been used to evaluate the 
relationship between nerve stimulation and blood flow increase [9-10]. 
However, in contrast, the decreased blood flow induced by TMS has 
been reported [9-10]. Thus, the effects of TMS on blood flow modulation 
are variable depending on the stimulation area and stimulation 
conditions such as stimulation frequency, intensity, and duration. The 
optimal stimulation conditions have not been established.

The eddy current density (J) is based on the Lenz’s law, and in this 
study the estimated values of eddy current for an AC EMF of Bmax 180 
mT were calculated using the following equation [11]:
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Here the maximum value of ≈1 A/m2 was 1/3 or less of the maximum 
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According to the report from World Health Organization (WHO), the 
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case of the eddy current density ranging 100 to 1000 mA/m2, the eddy 
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neural stimulation, but the values of current density are under those of 
the standard TMS method.

According to the report from World Health Organization (WHO), the 
biological effects of ELF-EMF-induced eddy current density ranging 
10 to 100 mA/m² have been well established, which can produce faint 
flickering visual sensations (magnetophosphenes), possible nervous 
system effects, and facilitation of bone fracture reunion [15]. In the 
case of the eddy current density ranging 100 to 1000 mA/m², the eddy 
current density in this range can influence neuron excitability [15]. It 
is speculated that the thresholds for stimulation of sensory receptors 
and of nerve and muscle cells may also lie in this range [15]. However, 
this raises the concern that unexpected stimulation of muscle tissue can 
result in a dangerous response, and that changes in excitability or direct 
stimulation of central nervous tissue can result in adverse changes in 
mental function [15].

3.3 Plausible Biochemical Mechanism of AC EMF for 
Hemodynamics

The plausible biochemical mechanisms of AC EMF for the promotion 
of hemodynamic responses have been reported in experimental 
studies [16-19]. Most importantly, the inhibitory effect of AC EMF on 
acetylcholinesterase (the lytic enzyme of acetylcholine) was observed 
in the magnetic flux density of 0.74 mT or more [17]. For additional 
pathways, the exposure of HaCaT cells to AC EMF (50 Hz, Brms 1 mT, 
for 3 h) increased inducible and endothelial nitric oxide synthase 
(NOS) expression levels [18]. These AC EMF-dependent increased 
expression levels were paralleled by increased NOS activities and 
increased nitric oxide (NO) production [18]. Moreover, a recent clinical 
study reported that 40 Hz EMF at 7 mT for 15 min/day significantly 
increased 3-nitrotyrosine and nitrate/nitrite levels in post-stroke 
patients, and improved functional and mental status [19]. Regarding the 
physiological mechanism of NO, it has been reported that NO formed 
via endothelial and neuronal NOS causes vasodilation, hypotension 
and increased blood flow [20]. Therefore, in this context, AC EMF-
induced NO production could promote blood circulation.

3.4 Plausible Integration Mechanism of AC EMF Effects for Pain 
Relief and Recovery of Muscle Fatigue

When given both plausible biophysical and biochemical mechanisms 
of the effects of AC EMF on pain relief and recovery of muscle 
fatigue, we speculate the following integration mechanism as shown 
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in Figure 7. Here, we put forward a hypothesis that the eddy current 
induced by AC EMF could play a crucial role in the initiation of a 
series of the physiological response processes involved in activation 
of parasympathetic nerve and hemodynamic responses via cholinergic 
pathways together with NO-mediated vasodilation. In general, blood 
circulation and microcirculation play a pivotal role on transporting the 
nutrients and growth substances as well as eliminating the metabolic 
waste products including endogenous pain producing substances that 
induce muscle hardness and pain [21]. 

Thus, these results imply that the physiological impact of EMF-
facilitated blood circulation may be helpful in the elimination of the 
metabolic waste products. In addition, EMF can promote wound 
healing by transporting the nutrients and growth substances. Further 
studies are needed to investigate EMF-based therapeutic applications 
and to elucidate the underlying mechanisms of EMF effects on pain 
relief and recovery of muscle fatigue.
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