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ABSTRACT: In the development of Ti-based alloy bio-implant material, 
Titanium Hydride (TiH₂) which is commonly used as a pore former agent has 
become one of the new approaches of starting material via powder metallurgy 
processing route with the aim of low-cost production in the fabrication of Beta-
typed Titanium Niobium (β-TiNb) alloy. However, the thermal behaviour 
of TiNb alloy by TiH₂ substitution is still not well understood. Thus, in the 
present work the compacted of Ti and Nb mixture was subjected to thermal 
analysis via differential thermal analysis (DTA) and dilatometry to evaluate 
thermal events existed during sintering process. It was found that the overall 
reaction had undergone four-step processes; the first two steps were subjected 
to the dehydrogenation process whereas the last two steps corresponded to 
the formation of TiNb alloy. In addition, the β phase of TiNb exhibited better 
appearance at 1200°C sintered temperature which was supported by X-ray 
Diffraction (XRD) analysis.

KEYWORDS: TiNb Alloy; Titanium Hydride; Thermal Analysis; Dehydrogenation; 
Sintering Behaviour

1.0 INTRODUCTION

Fabrication of new implant material based on Ti alloy has attracted 
much attention in biomedical research for hard tissue replacement 
such as hip and knee. The tremendous application of Ti alloy is due 
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to excellent mechanical properties, corrosion resistance and good 
biocompatibility in the human body [1-2]. Nevertheless, certain Ti-
based alloys exhibit high Young’s modulus; for instance, Ti-6Al-4V 
(110 GPa) that is greater than human cortical bone which is in the 
range of 10 to 30 GPa [3]. As a consequence, the mismatch problem 
arises between bones and implant material leading to stress shielding 
to human bones [4]. Among all the Ti alloys that already exist, TiNb 
alloy has received a great interest. Due to promising biocompatible and 
low Young’s modulus value (1.5~3 GPa) as reported in the literature [5], 
it is technically similar with human cancellous bone (~3 GPa) [6]. The 
low value of Young’s modulus is owing to the porous structure and 
the formation of β-phase in the structure. On top of that, the Ti-40Nb 
is selected in the composition in accordance to the work patented by 
Davidson and Kovacs [7] which stated that Nb content between 35-50 
by mass fraction has demonstrated low Young‘s modulus. 

The utilization of Ti with other powders (as-mixed) as a starting material 
for Ti alloy formation is basically unfavourable because of the high cost 
of the raw material,   problems of intermetallic phases and difficulties 
in machining [8]. The processing route needs a high vacuum to reduce 
the oxidation problem because Ti has a very high affinity for oxygen. 
Handling in a high vacuum may lead to the cost increase in production. 
Despite the high cost of Ti powder, a new approach to reduce the cost of 
production has been developed by incorporating TiH₂ powder instead 
of Ti powder [6, 9–11]. The usage of TiH₂ not only generates evenly 
distributed small pore , but it is also able to reduce the oxidation that 
subsequently prevents the intermetallic phases formation in the NiTi 
alloy case [6,12]. During the sintering process, the TiH₂ will undergo 
dehydrogenation process where H atom is released and eventually 
produces fresh generated Ti atom at approximately above 300˚C that is 
basically ready for an alloy formation. Below the 300˚C, the Ti particles 
are being protected from being oxidised as the Ti is bonded with H 
atoms [13]. 

The TiNb alloy has been successfully produced through two techniques 
namely arc melting [14] and powder metallurgy (PM) [5]. Each has 
specific advantages and limitations. With the concern towards intricate 
shape and geometry of implant components, PM is the promising 
processing candidate because it has the capability to produce the 
net final shape that minimizes or in some cases omits the secondary 
processes such as machining and drilling. Besides, through PM route, 
it is possible to obtain various pore sizes and mechanical properties by 
controlling the compacting and sintering condition [6]. 
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There are limited studies regarding fabrication route because the 
fabrication of TiNb alloy incorporated with TiH₂ is a new approach. 
Due to limited study in the formation of TiNb that is fabricated using 
TiH₂ powder, the phase transformation during sintering is still not 
well understood. Hence, this study attempted to use thermal analysis 
method with the purpose to understand the sintering mechanism of 
TiNb alloy particularly on phase transformation to facilitate some 
insights on sintering profile for experimental work. By referring to 
thermal analysis result, the present study attempted in prolonging the 
reaction time at a certain temperature in order to fabricate Ti40Nb alloy 
with β-rich phase as well as high porosity. The present study employed 
a low-cost processing route by PM incorporated with TiH₂  powder that 
is expected to produce a new promising Ti-40Nb alloy for implanting 
material and to establish an alternative PM route which is economically 
sound.

2.0 EXPERIMENTAL

The mixed powder of TiH₂-40Nb (weight %) was attained from mixing 
TiH₂ powder (average particle size of 53 μm) and Nb powder (average 
particle size of 130 μm) to a composition of 40% Nb and 60% TiH₂, 
respectively. The powders were milled for 5 hours within 15 minutes 
interval with 12 repetitions at 200 rpm using a planetary ball mill, 
Retsch PM 400 model. Then, the mixed powder was consolidated at 
room temperature to form a green compact with a die cylindrical of 25 
mm in size using a uni-axially die-compaction with a compact force of 
9.81 kN. The green compact was subsequently cut into a rectangular 
shape with a dimension of 4 x 6 x 14 mm³ in size for dilatometer 
analysis purpose. The cutting process was performed using a precision 
diamond cutter. 

The thermal analysis of DTA was carried out under inert nitrogen 
gas atmosphere. The analysis of DTA was carried out by Linseis 
DTA L81 at the heating rate of 10°C/min with flow gas at the rate of 
10 ml/min. The as-mixed powder sample with an initial weight of 49 
± 0.1 mg was inserted in alumina (Al₂O₃) crucible and heated up to 
1200°C. Meanwhile, in order to investigate the shrinkage of the sample 
during the sintering process, the green compact was subjected to 
dilatometry analysis. Linseis Dilatometer L₇₅ conducted the dilatometry 
measurements on a vertical configuration.  The heating rate was kept 
constant as the DTA value was at 10˚C/min to have a similar parameter 
for the sintering process.  
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Figure 1: Schematic diagram of PM processing route under argon environment 
 
The green compact was then sintered in a tube furnace with a heating rate of 5˚C/min 
under an argon gas environment. A few steps had been carried out to reduce the 
oxygen uptake by the sample because the sintering did not occur in a vacuum 
condition. The Ti-Nb powder compact was firstly placed on yttria plate prior to being 
embedded with yttria (Y2O3). The yttria plate was placed on the alumina crucible so 
that the surface of the green compact was not in contact with alumina crucible. The 
sample on the yttria plate and one embedded by the yttria powder was not being 
oxidized as would have happened if only alumina crucible was used. The sintering was 
conducted at a sintering temperature of 1200˚C. At the thermal event which was found 
after analyzing the thermal results, the reaction time was prolonged for 2 hours at the 
certain thermal event.   
 
The phases changed from the raw powder, mixed powder to the as-sintered sample 
using X-ray diffraction analysis (XRD) where the XRD was performed using a Rigaku 
3014, Japan. Phases in the present work were identified by matching their characteristic 
pattern peaks with those in the files of the Joint Committee on Powder Diffraction 
Standards (JCPDS).  
 
 
 
 
 
 

Figure 1: Schematic diagram of PM processing route under argon 
environment

The green compact was then sintered in a tube furnace with a heating 
rate of 5˚C/min under an argon gas environment. A few steps had 
been carried out to reduce the oxygen uptake by the sample because 
the sintering did not occur in a vacuum condition. The Ti-Nb powder 
compact was firstly placed on yttria plate prior to being embedded with 
yttria (Y₂O₃). The yttria plate was placed on the alumina crucible so 
that the surface of the green compact was not in contact with alumina 
crucible. The sample on the yttria plate and one embedded by the 
yttria powder was not being oxidized as would have happened if only 
alumina crucible was used. The sintering was conducted at a sintering 
temperature of 1200˚C. At the thermal event which was found after 
analyzing the thermal results, the reaction time was prolonged for 2 
hours at the certain thermal event.  

The phases changed from the raw powder, mixed powder to the as-
sintered sample using X-ray diffraction analysis (XRD) where the 
XRD was performed using a Rigaku 3014, Japan. Phases in the present 
work were identified by matching their characteristic pattern peaks 
with those in the files of the Joint Committee on Powder Diffraction 
Standards (JCPDS). 

3.0 RESULTS AND DISCUSSION

3.1 Differential Thermal Analysis (DTA) 

Figure 2 shows the DTA result of the powder mixture of TiH₂-40Nb, 
indicating the change in the heat flow with respect to the temperature. 
According to this curve, the reaction in the formation of TiNb alloy 
can be divided into four main steps whereby the first two stages 
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represented the dehydrogenation process while the other two stages 
represented the formation reaction of TiNb alloy. In accordance with 
literature [16–18], the dehydrogenation process of TiH₂ undergoes a 
two-step reaction which can be expressed as
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  22 HTiαTiH                                                    (2) 
 

Based on the Equation (1), the TiH2 basically underwent partial decomposition of H 
atom at the first stage of the reaction. The temperature at which the H atom began 
liberated was approximately at 300°C where there was a small endothermic curve with 
an onset temperature of 350°C as illustrated in Figure 2 (I). From the small endothermic 
peaks, the large endothermic reaction at temperature 600°C followed as observed in 
Figure 2 (II). As a matter of fact, the dehydrogenation is a process whereby the TiH2 
absorbed energy to have dissociation of H atom and subsequently produced fresh 
generated Ti atom [12] that presently accessible for reaction with Nb atoms. The TiH2 
was basically protected the Ti atom from being oxidized because the fresh generated of 
the Ti was available after 300°C which was the temperature at which partial 
decomposition occurred, below the temperature. Instead of using Ti which was easily 
oxidized at low temperature due to high affinity toward oxygen, the TiH2 could reduce 
the oxidation process at the initial stage of the heating process. Owing to the interstitial 
site in its lattice that was already occupied by H atom, this TiH2 reduced the possibility 
of dissolution of oxygen atom on the Ti atom respectively [18]. 
 
In Figure 2 (II), there was a broad endothermic peak at a temperature around 600°C. 
According to Liu et al. [8], the peak at around 600°C represented a dehydrogenation 
process which confirmed that the broad endothermic peak at II was the subsequent 
thermal event of the dehydrogenation of TiH2 from the mixture powder sample. Based 
on the large endothermic peak, the high amount of energy being absorbed by the 
sample had a phase transition from TiHx to α-Ti as expressed in Equation (2). In other 
words, the peaks basically corresponded to the phase changes from the face-centered 
cubic cell (FCC) (TiH2) with CaF2 crystal structure to hexagonal close packed (HCP) 
structure [17]. After this phase transition, the α-Ti subsequently was ready for latter 
diffusion reaction with Nb atom. 
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Based on the Equation (1), the TiH₂ basically underwent partial 
decomposition of H atom at the first stage of the reaction. The 
temperature at which the H atom began liberated was approximately 
at 300°C where there was a small endothermic curve with an onset 
temperature of 350°C as illustrated in Figure 2 (I). From the small 
endothermic peaks, the large endothermic reaction at temperature 
600°C followed as observed in Figure 2 (II). As a matter of fact, the 
dehydrogenation is a process whereby the TiH₂ absorbed energy 
to have dissociation of H atom and subsequently produced fresh 
generated Ti atom [12] that presently accessible for reaction with 
Nb atoms. The TiH₂ was basically protected the Ti atom from being 
oxidized because the fresh generated of the Ti was available after 300°C 
which was the temperature at which partial decomposition occurred, 
below the temperature. Instead of using Ti which was easily oxidized 
at low temperature due to high affinity toward oxygen, the TiH₂ could 
reduce the oxidation process at the initial stage of the heating process. 
Owing to the interstitial site in its lattice that was already occupied by 
H atom, this TiH₂ reduced the possibility of dissolution of oxygen atom 
on the Ti atom respectively [18].

In Figure 2 (II), there was a broad endothermic peak at a temperature 
around 600°C. According to Liu et al. [8], the peak at around 600°C 
represented a dehydrogenation process which confirmed that the 
broad endothermic peak at II was the subsequent thermal event of the 
dehydrogenation of TiH₂ from the mixture powder sample. Based on 
the large endothermic peak, the high amount of energy being absorbed 
by the sample had a phase transition from TiHx to α-Ti as expressed 
in Equation (2). In other words, the peaks basically corresponded to 
the phase changes from the face-centered cubic cell (FCC) (TiH₂) with 
CaF2 crystal structure to hexagonal close packed (HCP) structure [17]. 
After this phase transition, the α-Ti subsequently was ready for latter 
diffusion reaction with Nb atom.
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Figure 2: The DTA curve of heat flow varies as a function of temperature for TiNb alloy  
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Ti. On the other hand, the transition of α to β phase transition began nearly at 800˚C 
(Figure 2). The transition temperature decreased from the 882˚C temperature to 800˚C 
due to the addition of Nb in Ti alloy in which Nb acted as a beta stabilizer [20]. Figure 2 
(IV) showed a small endothermic peak where it might indicate oxidation of Ti at high 
temperature. These similar findings are reported by Pascu et al. [22] that attributed the 
endothermic peak to the formation of TiO2. At 1200°C, it can be seen that the reaction is 
already in a stable condition [21].  
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Figure 2: The DTA curve of heat flow varies as a function of 
temperature for TiNb alloy

Meanwhile, a peak at III as displayed in Figure 2 implied the formation 
of TiNb alloy. The exothermic reaction in peak III corresponded to 
the transition phase of the α-Ti hexagonal crystal structure to β-Ti 
body centered cubic (BCC) structure. The HCP, in fact, had higher 
slip number rather than BCC structure [19]. Thus, the energy released 
emphasized that there was a phase transformation from HCP to BCC 
crystal structure which resulted in the reduction of the slip distance in 
the particular crystal structure of Ti. On the other hand, the transition of 
α to β phase transition began nearly at 800˚C (Figure 2). The transition 
temperature decreased from the 882˚C temperature to 800˚C due to 
the addition of Nb in Ti alloy in which Nb acted as a beta stabilizer 
[20]. Figure 2 (IV) showed a small endothermic peak where it might 
indicate oxidation of Ti at high temperature. These similar findings are 
reported by Pascu et al. [22] that attributed the endothermic peak to the 
formation of TiO₂. At 1200°C, it can be seen that the reaction is already 
in a stable condition [21]. 

3.2 Dilatometry Analysis

Figure 3 shows the shrinkage curve of Ti-40Nb with respect to 
temperature. Based on Figure 3, the sintering process of Ti-40Nb alloy 
consisted of four stages of reaction and this result is consistent with 
DTA result as illustrated in Figure 2, respectively. The first and second 
part of the reaction basically indicated dehydrogenation reaction 
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in which this reaction was accompanied by volume expansion. In 
Figure 3 (I) and (II), the samples expanded a little at a temperature of 
approximately 300°C and continued until 600°C. This shrinkage curves 
ideally presented two-step reaction of dehydrogenation process. The 
large curve corresponded to huge changes in volume due to an increase 
of intrinsic density of Ti atom itself whereby it was from TiH₂ (3.9 g/
cm³) to Ti atom (4.5 g/cm³) respectively. Due to the increase of intrinsic 
density, supposedly, the sample underwent volume shrinkage as 
reported in a previous study [15]. However, in this case, the sample 
expanded. The expansion was derived from the different solubility of 
the mixed powders which caused swelling and pore formation [22].

The increase of intrinsic density was basically upon the phase change 
of Ti particle from δ-FCC crystal body structure to α-HCP crystal body 
structure. The FCC presently has 12 slip system and low slip distance 
while HCP has 3 to 6 slip system in which it is one-fourth to one-half 
from FCC slip system with higher slip distance rather than FCC [23]. 
Thus, the expansion curve resulted from the increase of slip distance of 
FCC to HCP crystal body structure. The slip distance increases because 
of heat expansion due to the increase in temperature [24]. Nevertheless, 
the expansion did not continuously occur. As the heat energy increased 
and with the presence of Nb as a beta stabiliser, the Ti atom then tended 
to become β phase resulted in volume shrinkage as illustrated in III. 
The increase in energy caused the α-Ti in HCP system being packed by 
Nb atom and other Ti atoms in which at the end, it turned to body cubic 
crystal (BCC) structure of β-Ti.
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Figure 3: The shrinkage curves of TiNb as a function of temperature 
 
 

Figure 3 (IV) shows the sample undergoes a slight expand in size. The expansion was 
probably due to the formation of TiO2 as mentioned in the DTA analysis. In addition, 
this expansion was also probably due to the formation of pores. The presence of pores 
was basically from the Kirkendall effect mechanism that existed because of the 
difference in the diffusion rate of Ti and Nb as well as rapid exothermic reaction 
beforehand [25]. The atomic fraction of Nb in this composition of the Ti-40Nb alloy was 

Figure 3: The shrinkage curves of TiNb as a function of temperature
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Figure 3 (IV) shows the sample undergoes a slight expand in size. The 
expansion was probably due to the formation of TiO₂ as mentioned in 
the DTA analysis. In addition, this expansion was also probably due 
to the formation of pores. The presence of pores was basically from 
the Kirkendall effect mechanism that existed because of the difference 
in the diffusion rate of Ti and Nb as well as rapid exothermic reaction 
beforehand [25]. The atomic fraction of Nb in this composition of the Ti-
40Nb alloy was only 25.73% where it made the Nb to have low density 
rather than Ti particles. Besides, the Nb had a larger size rather than 
TiH₂ which affected the diffusion rate. Hence, this led to the Kirkendall 
pores formation and at the same time caused the diffusion of Ti with 
Nb which was not too favourable. Thus, the sintering process tended to 
be dominated by the Ti-Ti diffusion instead of Ti-Nb.

3.3 Phase Identification

Figure 4 shows the XRD pattern for TiH₂ powder, Nb powder, as-
mixed powder and as-sintered sample. From the diffraction pattern in 
(a) and (b) which indicated TiH₂ powder and Nb powder, respectively, 
the XRD pattern justified the purity of the raw powders in which no 
impurities exhibited in the diffraction patterns, particularly for both 
powders. This is the same case for the as-mixed powder by ball milling 
operation where the intensity peaks at (c) demonstrated the intensity 
peaks of TiH₂ and Nb powders only.   

However, there was a presence of TiO₂ with a space group of P42/mnm, 
in the sintered sample in small intensity because the sintering process 
was conducted under argon gas and not in a vacuum condition. This 
TiO₂ was in the tetragonal crystal structure that formed as a result of 
stretching the cubic structure. On top of that, there was an exothermic 
reaction after temperature of around 1000°C. This is consistent with 
XRD data where there was TiO₂ peaks presence at the as-sintered 
sample that resulted from the distortion of BCC of β-Ti. The diffraction 
pattern of TiO₂ in this present work was similar as in a previous study 
[24]. 

Besides that, the rich in β phase after sintered at 1200°C was due to 
diffusion of Nb in Ti lattice progressively. It can be illustrated by the 
XRD pattern of as-sintered sample where the intensity of β-Ti (space 
group of Im3m) peaks overlapped with Nb diffraction peaks. In 
another perspective, it can be concluded that this Nb particle did not 
completely diffuse in Ti lattice. These data supported the statement 
that the diffusion in TiNb was being dominated by the diffusion of Ti-
Ti instead of Ti-Nb reaction and this was also in accordance to previous 
research [26]. 
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In respect to the presence of Nb particles that did not completely diffuse 
in Ti matrix lattice, this Nb also acted as a diffusion barrier as it did 
not permit the Ti-Ti diffusion. The large size of Nb particles inhibited 
the diffusion of Ti-Ti particles because Nb did not diffuse completely. 
This is probably one of the reasons of the minimal densification and 
shrinkage of the sintered sample. This assumption was in accordance to 
a study by Zhao et al.  [26]. Furthermore, the TiO₂ present was beneficial 
in promoting good osseointegration and helped in preventing the 
dissolution of metallic ions into the surrounding cell tissue. Besides, this 
Ti oxide influenced the mechanical interlocking between the implant 
and the bone. On the other hand, the TiH₂ had completely undergone 
dehydrogenation process where there were no traces of TiH₂ in the as-
sintered sample. Basically, the diffraction patterns for β-Ti, α-Ti, and 
Nb were similar as in Zhao et al.’s study [26]. 
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Figure 4: XRD patterns of: (a) TiH2 powder, (b) Nb powder, (c) As-mixed powder of TiH2 and 
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temperature 600°C, this Ti atom is basically ready for the formation with Nb atom 
resulted in the formation of TiNb alloy for implant application. On the other hand, the 
other steps represent diffusion process of Ti and Nb alloy. The presence of rich β phase 
above 1000°C would provide promising excellent mechanical properties that are 
suitable for implant material.  The sintering process is dominated by Ti-Ti diffusion 
instead of Ti-Nb due to low density and large size of Nb atom. The difference in 
diffusion rate of Ti and Nb causes Kirkendall effect that leads to the formation of pores. 
Future study should be carried out in order to attain new implant material with low-
cost processing route with promising mechanical properties.  
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4.0 CONCLUSION

Based on the thermal analysis result, it can be concluded that the TiH2 
undergoes two steps of dehydrogenation process which produces fresh 
generated Ti atom. After temperature 600°C, this Ti atom is basically 
ready for the formation with Nb atom resulted in the formation of 
TiNb alloy for implant application. On the other hand, the other steps 
represent diffusion process of Ti and Nb alloy. The presence of rich 
β phase above 1000°C would provide promising excellent mechanical 
properties that are suitable for implant material.  The sintering process 
is dominated by Ti-Ti diffusion instead of Ti-Nb due to low density 
and large size of Nb atom. The difference in diffusion rate of Ti and 
Nb causes Kirkendall effect that leads to the formation of pores. Future 
study should be carried out in order to attain new implant material 
with low-cost processing route with promising mechanical properties. 
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