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ABSTRACT: The needs of research on human posture and its joint-motion 
relationships are important. Providing a real-time postural measurement tool 
has attracted the attention of many human postural-related researchers. This 
study has developed and performed a validation analysis on a new innovative 
system for sampling and finding the angles of motions of each posture 
with its related joints using Kinect camera. The validation investigated the 
static and dynamic accuracy analyses by comparing to a Jamar goniometer 
and ErgoFellow system. The results showed that Mean Absolute Errors of 
Kinect in static and dynamic motions are 15.12% and 45.33% respectively. It 
is concluded that the postural measurement system developed by this study 
requires further improvements.
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1.0 INTRODUCTION

Work-related musculoskeletal disorders (WMSDs) are common 
injuries in a workplace environment. Awkward postures are one of the 
risk factors that greatly cause WMSDs. As stated in the annual report 
of Health and Safety Executive (HSE), in UK, 45% of disorders are from 
upper limbs or neck, 38% related to back, and 17% from joints of the 
lower limbs. It is highlighted that manual materials handling, repetitive 
motion in awkward or strenuous postures are the main causes of these 
disorders [1]. On that account, the need for studying human postures 
is crucial to reduce its risk factor. However, human posture by itself is 
a complicated system, since it consists of high movement degrees of 
freedom, with various body types and topologies. In addition to the 
complexity of the human posture, the environment plays a significant 
role in the identification and detection of human motion, due to effects 
such as occlusion and luminance [2-3]. Human motion is highly 
dependent on the human posture with its bones, joints and ligaments, 
and muscles with its tendons [4]. 

The interest in studying human motion appeared since ages, and 
perhaps it started to be a highly researched topic when the power of 
computers came into existence. Since the late 1970s, researchers have 
set their lives to find the most accurate unified mathematical models 
to define the human motion suitable with the limitation of the high 
speed intelligent electronic device processing. As such, it contributes 
and motivates to push the limits of technologies to achieve the dream 
of a real-time analysis of human motion [2]. In 2010, a new, innovative, 
cost-effective technology came into sight, with its ability to perform 
high speed human motion analysis. This technology combined the 
power of depth sensing with the two dimensional RGB camera to 
create a three dimensional spatial analysis of the scenes. This RGB-D 
camera is called Kinect and since its release, researchers have shown 
a significant interest to use this tool for solving the dream of a real-
time human motion analysis [5-6]. Kinect provides a simplified tool to 
enable a software developer to track the skeletal motions related to their 
joints [7], and it has been widely used in previous studies. For example, 
in ergonomics studies, Kinect was used with various assessment tools 
especially with RULA Assessment tool [8-9]. Some research works 
did validation tests on Kinect with different models of experiments. 
Models were set into various aspects, such as: referenced validated tool 
comparison, Kinect accuracy behavior related to various positions and 
focused joint-motion relation. Abobakr et al. [10] conducted accuracy 
validation tests for 29 joint-motions using AlexNet algorithmic model. 
The overall average Mean Absolute Error (MAE) calculated was 4.67°, 



ISSN: 1985-3157        Vol. 12     No. 2   July - December 2018

Upper Limb Joints and Motions Sampling System Using Kinect Camera 

149

and the average Root Mean Square Error (RMSE) was 6.64°. Plantard 
et al. [11] measured the accuracy of Kinect for 13 joint-motions. The 
measured average angles error calculated ranged around 7.7° and 10°. 
Tarabini et al. [12] performed accuracy study comparison between 
Kinect, Notch Inertial Measurement Unit (IMU) system, and visual 
evaluation. The comparison was conducted on 12 joint-motions, and it 
was found that the RMS difference between Kinect and Notch system 
is lower than 10°. Marino et al. [13] used Goniometer as a gold standard 
to compare the various angles of joints-motions accuracy with Kinect. 
Despite the various validation studies on Kinect, none has considered 
the validation on both static and dynamic motion analyses.

The aim of this study was to develop an upper limb joint-motion 
sampling system using Kinect, by enabling the user to classify and 
choose the degree of motion readings, and save them into a database. 
Furthermore, a preliminary validation was conducted using a well-
known instrumental mathematical equation to determine the error ratio. 
The accuracy percentage for each joint-motion position through two 
pilot studies in a specifically designed workflow process experiments 
was calculated. The percentage of accuracy is subjective to our software 
development, experimental process design, mathematical model, and 
the usage of the manual measurement tools.

2.0  DESIGN AND DEVELOPMENT

In the design and development of the joint-motion sampling system, 
C# .NET framework was used as the programming language for the 
development of this tool. The development stages of this research are 
as follow: 
i. Design the process of using the Kinect joint-motion measurement 

tool and the software development.
ii. Design the standardized experimental procedures for static and 

dynamic motion analyses.
iii. Conduct preliminary experimental studies to analyze the accuracy 

of angle measurements of the developed system.

The design of an automated computerized joint-motion sampling 
measurement system started with identification of user requirements. 
This was carried out through a literature review which revealed that 
most users wanted a sampling system that is computerized, automated, 
user-friendly, and flexible. Neumann et al. [14] stated that sampling of 
posture with its related work is crucial, especially for assorted tasks. 
By quantifying the postural activity, more controlled and less biased 
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judgments on human movements can be made. Karhu et al. [15] in 
their study in 1977, through questioning inspired future researchers 
to find ways to create an automated computerized system for posture 
and movement analysis. Chang et al. [16] and Wolf et al. [17] noted 
the importance of using computerized systems to quantify and classify 
human motions and postures. The developed system (Figure 1) was 
used in this study.
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2.1 Process Design of using the Kinect Joint-Motion 
Measurement  Tool and Software Development

The process design of the tool as shown in Figure 2 asks the user to 
start with registering the user’s metadata by specifying the task name, 
and the directory to save the experimental data. Then, the user is asked 
to select joints and motions for the intended experiment as shown in 
Figure 3. The tool allows the user to choose three types of motions for 
four types of joints. The motions are: flexion/extension, lateral flexion, 
and abduction/adduction. The joints are: upper arm, elbow, trunk, and 
neck. Before the results of postural angles are recorded, the subject 
is asked to do a pre-test user checklist as described: (1) The subject is 
within 2.3 - 3.5 meters away from Kinect camera, (2) Only one subject is 
detected from Kinect camera, (3) The subject is in front-view of Kinect 
camera. The results will be recorded in the task name folder, in the 
directory path as specified previously.
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subject is in front-view of Kinect camera. The results will be recorded 
in the task name folder, in the directory path as specified previously. 

 

 
Figure 2: Process flowchart of the 

user interaction 

 
Figure 3: Joints and motions 
sampling selection from the 

software 
 
The software development started with finding the most suitable 
algorithm to access the 3D vectors of joints in the skeletal tracking. 
Microsoft.Kinect and System.Windows.Media.Media3D namespaces 
were used to access the 3D vectors of the joints. Then, a calibration 
was made to define the angle between the joints and the Kinects’ XYZ 
axes for various motions. This was followed by redefining the angles 
reading after general accuracy validation of the calibrated angles for 
several subjects. Figure 4 shows the process flow chart for the 
software development. 

 

 
Figure 4: Process flowchart of the software development 
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The software development started with finding the most suitable 
algorithm to access the 3D vectors of joints in the skeletal tracking. 
Microsoft.Kinect and System.Windows.Media.Media3D namespaces 
were used to access the 3D vectors of the joints. Then, a calibration 
was made to define the angle between the joints and the Kinects’ XYZ 
axes for various motions. This was followed by redefining the angles 
reading after general accuracy validation of the calibrated angles for 
several subjects. Figure 4 shows the process flow chart for the software 
development.
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2.2  Standard Operating Procedure Design for Static and 
Dynamic Analyses 

The Standard Operating Procedure (SOP) for static postural validation 
was done through a comparison of a Kinect and a Jamar goniometer 
(Sammons Preston Roylan, USA). This research asked three subjects to 
perform three different poses for each different joint. Each pose has a 
different set of angles. Figure 5 shows the setup of the experiment. The 
goniometer was used to ensure the subject is in the specified postural 
angle, and to verify the recorded angles in the Kinect device. SOP 
design for dynamic postural validation was done with a comparison 
of a Kinect and a manual angles determination image analysis tool 
using ErgoFellow v3.0 software (FBF sistemas, Portugal). ErgoFellow 
software provides a tool for determining the angles in between two lines. 
The user in ErgoFellow set three points to determine and measure the 
angle of motion in the subject’s recorded image. The dynamic postural 
study asked the user to perform a predefined work process, with four 
sequences, four motions and joints for three sample sized subjects. 
Figure 6 shows the Kinect dynamic postural results as compared to 
ErgoFellow software.
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Figure 6: Dynamic postural validation study 
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Where, 
Exact: is the Jamar goniometer value in static analysis, and the 
ErgoFellow value in the dynamic analysis.
Measured: is the Kinect joint-motion measurement of the studied 
motion.
n: is the sample size of the study.

3.0  RESULTS AND DISCUSSION

The overall static motion analysis performance as seen in Figure 7, 
shows that trunk in flexion/extension motion, and neck in right lateral 
flexion motion are the least accurate. In addition, elbow and upper arm 
in right and left flexion/extension shows the best accuracy performances. 
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The overall dynamic motion analysis performance in Figure 8 shows 
that neck in flexion/extension dynamic motion is the least accurate in 
the study. Meanwhile, the right elbow in flexion/extension dynamic 
motion is the most accurate. Figure 9 shows the best motion analysis is 
when the subject in a standing position, while the least are in squatting 
and bending positions. Figure 10 and Table 1 show the overall accuracy 
performance of the system in static and dynamic motion analysis for 
upper arm, elbow, trunk, and neck in flexion/extension motion for a 
sample size of three subjects. It shows that the best performance is the 
elbow, followed by upper arm, neck, and trunk. In a static postural 
analysis, the accuracy of all joints’ measurement is above 80%, except 
for trunk flexion/extension and neck lateral flexion. When the postures 
are in dynamic, this study managed to validate elbow, upper arm, 
trunk, and neck joints for flexion/extension motions. Adding both static 
and dynamic accuracy performances, this study observed that trunk 
and neck joint-motion measurement needs further improvements.

In this study, the overall Mean Absolute Errors (MAE) in static and 
dynamic validation were 15.12% and 45.33% respectively. The nearest 
validation experiment with this study is the work carried out by 
Marino et al. [13]. They used Kinect V2 in a static standing position 
imitating writing on a notebook. Their results showed better accuracy 
when measuring the trunk and upper arm. This might be due to the 
experimental design, workplace setup, software development, and 
version of the Kinect used. Meanwhile, studies by Abobakr et al. [10], 
[18] showed the MAE results were 4.4° to 7° in three implemented 
methodologies. Their enhanced accuracy is due to their focus on 
algorithmic comparisons while, this present study used a manual 
goniometer as a referenced validation tool, which may present some 
human errors due to its manual use.

As an alternative to the above-mentioned limitation, a new methodology 
can be proposed in joint-motion measurement using an RGB camera 
with intensive artificial intelligence techniques and engines, by 
accessing the joints of the skeletal tracking and defining their motions 
using methods as per discussed in these papers [19-21]. However, using 
such techniques needs high processing power computers to train the 
datasets, and to do the reasoning tasks on images in order to achieve 
a calibration-free, marker-free, occlusion-free, and real-time 2D image 
postural detection analysis.
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Neck 87.5 36.54784622 62.02392 
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joint-motion sampling automated system using a marker-free and 
users’ calibration free Kinect device. The second contribution is a 
preliminary validation through two pilot studies in static and 
dynamic settings. The joint-motion sampling automated system 
developed by this study enables users to set the specified joint with its 
related motion, and register the results in the specified repository 
database. However, a preliminary validation through three subjects in 
static and dynamic settings showed that the Kinect has a big gap of 
inaccuracies when it is used as a joint-motion measurement tool. 
Therefore, further studies are needed to enhance the measurement 
accuracy and find the best tools or methodologies to develop an 
automated joint-motion sampling system. 
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Measurement of human posture is a promising research topic. By 
finding the angle values of each joint in a certain motion can contribute 
knowledge to various areas of research such as ergonomics, sports 
analysis, medical studies, and multimedia. This study has contributed 
in two ways. The first is the development of joint-motion sampling 
automated system using a marker-free and users’ calibration free Kinect 
device. The second contribution is a preliminary validation through 
two pilot studies in static and dynamic settings. The joint-motion 
sampling automated system developed by this study enables users to 
set the specified joint with its related motion, and register the results in 
the specified repository database. However, a preliminary validation 
through three subjects in static and dynamic settings showed that the 
Kinect has a big gap of inaccuracies when it is used as a joint-motion 
measurement tool. Therefore, further studies are needed to enhance 
the measurement accuracy and find the best tools or methodologies to 
develop an automated joint-motion sampling system.
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