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is found. An indefinite non-symmetric matrix with all positive off-diagonal 
entries and alternate signs of determinant of leading principal minors surely 
confirmed the existence of optimal solution in linear programming problems.   
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1.0 INTRODUCTION 
Linear programming (LP) is one of the most active studies on 
optimization problems [1]. In terms of LP problems, the duality 
solution are always taken into consideration to validate the 
accurateness of the solution [2]. LP problem is known as primal 
problem while its reflection is referred as dual problem [3]. The 
property of primal and dual provide deeper and further valuable 
understanding of the optimal solution to LP problems [4]. 
 
Primal LP problem can be shown as [5]:  
Min               𝑓𝑓  =   𝑐𝑐𝑇𝑇𝑥𝑥     (1) 
Subject to:         𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥  ≤    𝑏𝑏     (2)  

               𝑥𝑥 ≥   0     (3) 

1.0  INTRODUCTION
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Dual LP Problem can be written as: 
 Max                       𝑣𝑣  =  𝑏𝑏𝑇𝑇 𝑦𝑦     (4) 
Subject to:         𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛

𝑇𝑇 𝑦𝑦  ≥  𝑐𝑐     (5) 
                         𝑦𝑦 ≥  0     (6) 
 
where 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑎𝑎𝑖𝑖𝑖𝑖) is a matrix, 𝑐𝑐 = (𝑐𝑐1, 𝑐𝑐2, ⋯ , 𝑐𝑐𝑛𝑛); 𝑏𝑏 = (𝑏𝑏1, 𝑏𝑏2, ⋯ , 𝑏𝑏𝑛𝑛); 
𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, ⋯ , 𝑥𝑥𝑛𝑛); 𝑦𝑦 = (𝑦𝑦1, 𝑦𝑦2, ⋯ , 𝑦𝑦𝑛𝑛) are column vectors. Every 
elements (a, b and c) is ∈ R. 

 
The concept of duality in LP has been widely discussed. One of the 
characteristics of duality, i.e. strong duality between the lower and 
upper bound formulation of shakedown analysis of framed structure 
has been proven [6]. Besides, weak duality theory states that if primal 
is unbounded then dual is infeasible [7].  
 
The indefinite (ID) linear programs are complicated and harder than 
the definite and semi-definite linear programs. A lot of studies focus 
on the symmetric ID linear systems, i.e. study on the effect of a 
modified positive or negative-stable splitting method to the complex 
symmetric indefinite linear programs [8] and duality gap can exist in 
the primal and dual semi-indefinite linear programs [9].  
 
Researchers may face difficulties in solving ID matrices. Lee and 
Zhang proved that the proposed algorithms can only improve the 
accuracy and stability of the solutions and cannot guarantee the 
achievement of optimal solution to the linear problems [10]. Other 
studies focus on the practical usage of the ID matrix in solving linear 
problems rather than theoretical development. There are limited 
sources on the effect of characteristics of ID matrix to the linear 
solutions.   
 
 Xu [11] presented the eigenvalue bounds of two classes of two-by-
two block indefinite matrices to solve problems. The effect of 
symmetric matrices to the linear solutions has been discussed by 
Romli et al.[12] by showing that indefinite symmetric matrices might 
or might not provide solution to the linear problems and it does not 
guarantee the existence of optimal solution. 
 
Hence, this paper extends the research of [12] by focusing on 
investigating  characteristics of ID non-symmetric square matrices 
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has been proven [6]. Besides, weak duality theory states that if primal 
is unbounded then dual is infeasible [7].  
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on the symmetric ID linear systems, i.e. study on the effect of a 
modified positive or negative-stable splitting method to the complex 
symmetric indefinite linear programs [8] and duality gap can exist in 
the primal and dual semi-indefinite linear programs [9].  
 
Researchers may face difficulties in solving ID matrices. Lee and 
Zhang proved that the proposed algorithms can only improve the 
accuracy and stability of the solutions and cannot guarantee the 
achievement of optimal solution to the linear problems [10]. Other 
studies focus on the practical usage of the ID matrix in solving linear 
problems rather than theoretical development. There are limited 
sources on the effect of characteristics of ID matrix to the linear 
solutions.   
 
 Xu [11] presented the eigenvalue bounds of two classes of two-by-
two block indefinite matrices to solve problems. The effect of 
symmetric matrices to the linear solutions has been discussed by 
Romli et al.[12] by showing that indefinite symmetric matrices might 
or might not provide solution to the linear problems and it does not 
guarantee the existence of optimal solution. 
 
Hence, this paper extends the research of [12] by focusing on 
investigating  characteristics of ID non-symmetric square matrices 
and trying to identify properties of ID matrices which can guarantee 
the optimal solution to the linear problems. Randomized parameters 
are strongly suggested in computing applications as they can provide 
outstanding performance than deterministic algorithms but still 
giving accurate solutions to the problems [13].  This study focused on 
small size of LP problems, hence, simplex method was applied due to 
its efficiency in practice for solving various small types and sizes of 
LP problems [14]. This algorithm is carried out by moving along the 
extreme points in the edges of a feasible region until optimal solution 
is found [15].  
 
2.0 METHODOLOGY 
The methodology of this study started with defining the problem 
statement, objectives and scopes. Then, the coefficients of objectives 
function, square matrices and right hand side (RHS) vectors were 
randomly generated by MATLAB. The generated matrix was tested 
by verifying that its characteristics belonged to indefinite (ID) matrix. 
Once the parameters were obtained, the LP problems were ready to 
solve.  
 
2.1 Generate Random Non-symmetric Square Matrices    
Create square matrices using random generator. For example, 
 

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = [
𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑛𝑛
𝑎𝑎12 𝑎𝑎22 … 𝑎𝑎2𝑛𝑛

⁞
𝑎𝑎1𝑛𝑛 𝑎𝑎2𝑛𝑛 . . 𝑎𝑎𝑛𝑛𝑛𝑛

]               (7) 

 

This paper aimed at identifying further information on the effect of ID 
matrix to the LP solutions and the dimension of the generated ID non-
symmetric square matrices was up to 20x20, which is 5x5, 10x10 and 
20x20. 
 
2.2  Verify Properties of ID Random Non-symmetric Square 
Matrices  
First step of verification was determined through the determinant of 
leading principal minors. The determinant of any square matrix 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 
was denoted as |𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛| or det (𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛). Let 𝛼𝛼𝑘𝑘 be the determinant of the 
leading principal minor of order k of 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛, as shown: 
 

𝛼𝛼1 = 𝑎𝑎11 , 𝛼𝛼2 =  𝑑𝑑𝑑𝑑𝑑𝑑 [𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

] , 𝛼𝛼𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛             (8) 
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The matrix was ID matrix if and only if it failed the definiteness test 
sign and the semi-definiteness test sign or it was neither definite nor 
semi-definite matrix. Else, a square matrix A can be classified as 
indefinite matrix if and only if [16]: 

1.  αk  < 0 for some even k or; 
2.  αk1 > 0 for odd 𝑘𝑘1 and  αk2 < 0 for even 𝑘𝑘2. 

 
Then, quadratic form test 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥 was required, where x was 
any vector. It was applied by means of each of the generated square 
matrices which were multiplied with vector x. By looking at the sign 
of the results of the quadratic form test of the real square matrix 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 , 
researchers were able to identify the definiteness properties of a 
matrix. 
 
Last step was to determine the eigenvalues of the generated random 
square matrix. If the eigenvalues belonged to matrix A consisted of 
both positive and negative values, then the matrix was defined as ID 
matrix [17]. For an indefinite matrix, A, let assume λ is an eigenvalue 
of A, then for any eigenvector x that belong λ, it shows that 
 

𝑥𝑥𝑇𝑇𝐴𝐴𝑥𝑥 =  𝜆𝜆𝑥𝑥𝑇𝑇𝑥𝑥 =  𝜆𝜆||𝑥𝑥||2                 (9) 
Thus,  

        𝜆𝜆 =  𝑛𝑛𝑇𝑇𝐴𝐴𝑛𝑛
||𝑛𝑛||2                                      

(10) 
  
2.3 Solve and Validate the Primal-Dual Solution 
Once the parameters were generated, MATLAB was used to solve the 
LP primal and dual problems. The simulation results were validated 
by Lingo software. All primal and dual solutions were summarized 
for further analysis and discussion. 
 
3.0 RESULTS AND DISCUSSION 

 3.1     Results 
The study created 180 simulated LP problems. The indefinite (ID) 
random non-symmetric square matrices had been generated based on 
three criteria and the samples of generated matrices of order 5x5 were 
shown in Table 1.  
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Table 1: Samples of generated 𝑨𝑨𝟓𝟓𝟓𝟓𝟓𝟓 square matrices 
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Three criteria were used to verify the generated random square 
matrices which belonged to ID matrix. Table 2 shows the results of 
determinant of leading principal minors of some generated ID 
matrices. 
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Three criteria were used to verify the generated random square matrices 
which belonged to ID matrix. Table 2 shows the results of determinant of 

leading principal minors of some generated ID matrices. 
 

Table 2: Samples of determinant of principal minor of 𝐴𝐴5𝑥𝑥5 square matrices 
Characteristics Generated  

Square 
Matrices 

Leading Principal Minor 

𝜶𝜶𝟏𝟏 𝜶𝜶𝟐𝟐 𝜶𝜶𝟑𝟑 𝜶𝜶𝟒𝟒 𝜶𝜶𝟓𝟓 

Matrix with different sign of leading 
principal minors 

1st 10 -160 46 -22150 -100075 

2nd -14 -44 263 -2922 227841 

Matrix with alternate sign of leading 
principal minors with all positive sign of 
off-diagonal entries 

1st 29 -553 15856 -90251 113571 

2nd 17 -202 3077 -57741 1382921 

Matrix with alternate sign of leading 
principal minors with random sign of off-
diagonal entries 

1st 24 -554 8192 -58804 469476 

2nd 8 -190 3214 -43530 665867 

 
All matrices in Table 2 fulfilled the characteristics of the ID matrix. A number 
of matrices consisted of negative value for even orders while other matrices 
involved alternate sign of leading principal minors with strictly positive at 
odd orders and strictly negative at even orders. Those characteristics 
indicated the generated square matrices failed the definiteness and semi-
definiteness test sign.  
 
Based on the results, the quadratic form test of these ID matrices involved 
both negative and positive numbers. Each square matrix might give positive 
and negative results of quadratic form test. Besides, the eigenvalues test 
showed that the eigenvalues for all matrices consisted both positive and 
negative values, thus, the generated matrices were categorized as ID matrices. 
Once the matrix was verified as ID matrix, then it was ready to solve.  
 
The results of MATLAB for primal and dual solution are tabulated in Table 3. 
Similar to the findings in [12], some LP problems converged to optimal 
solution while some of the LP problems failed to get optimal solution, which 
indicated the duality gap between the LP solutions. 

 
Table 3: Samples of primal and dual solutions 

Characteristics ID Random 
Square 
Matrix 

Primal LP Solution for ID Random Non-symmetric Square Matrix 
𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒 𝒙𝒙𝟓𝟓 𝒇𝒇𝒙𝒙 

Matrix with 
different sign of 
leading 
principal minors 

1st 20.9735 6.5242 0 31.5367 35.6819 5666.386 
2nd 1.0e+016 4.77e+0

16 
0 0 9.62e+016 1.14e+019 

ID Random 
Square 
Matrix 

Dual LP Solution for ID Random Non-symmetric Square Matrix 
𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒚𝒚𝟒𝟒 𝒚𝒚𝟓𝟓 𝒇𝒇𝒚𝒚 

1st 23.72489 1.9299 0 19.3906 35.3134 5666.386 
2nd 9.8454 0 12.8624 0 17.0124 2444.798 

Matrix with 
alternate sign of 
leading 
principal minors 
with all positive 

ID Random 
Square 
Matrix 

Primal LP Solution for ID Random Non-symmetric Square Matrix 
𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒 𝒙𝒙𝟓𝟓 𝒇𝒇𝒙𝒙 

1st 0 13.6502 2.5653 0.8324 13.9503 1231.953 
2nd 0 1.1498 0.8228 4.3694 0 503.135 
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Based on the results, the quadratic form test of these ID matrices 
involved both negative and positive numbers. Each square matrix 
might give positive and negative results of quadratic form test. 
Besides, the eigenvalues test showed that the eigenvalues for all 
matrices consisted both positive and negative values, thus, the 
generated matrices were categorized as ID matrices. Once the matrix 
was verified as ID matrix, then it was ready to solve.  
 
The results of MATLAB for primal and dual solution are tabulated in 
Table 3. Similar to the findings in [12], some LP problems converged 
to optimal solution while some of the LP problems failed to get 

leading principal minors of some generated ID matrices. 
 

Table 2: Samples of determinant of principal minor of 𝐴𝐴5𝑥𝑥5 square matrices 
Characteristics Generated  

Square 
Matrices 

Leading Principal Minor 

𝜶𝜶𝟏𝟏 𝜶𝜶𝟐𝟐 𝜶𝜶𝟑𝟑 𝜶𝜶𝟒𝟒 𝜶𝜶𝟓𝟓 

Matrix with different sign of leading 
principal minors 

1st 10 -160 46 -22150 -100075 

2nd -14 -44 263 -2922 227841 

Matrix with alternate sign of leading 
principal minors with all positive sign of 
off-diagonal entries 

1st 29 -553 15856 -90251 113571 

2nd 17 -202 3077 -57741 1382921 

Matrix with alternate sign of leading 
principal minors with random sign of off-
diagonal entries 

1st 24 -554 8192 -58804 469476 

2nd 8 -190 3214 -43530 665867 

 
All matrices in Table 2 fulfilled the characteristics of the ID matrix. A number 
of matrices consisted of negative value for even orders while other matrices 
involved alternate sign of leading principal minors with strictly positive at 
odd orders and strictly negative at even orders. Those characteristics 
indicated the generated square matrices failed the definiteness and semi-
definiteness test sign.  
 
Based on the results, the quadratic form test of these ID matrices involved 
both negative and positive numbers. Each square matrix might give positive 
and negative results of quadratic form test. Besides, the eigenvalues test 
showed that the eigenvalues for all matrices consisted both positive and 
negative values, thus, the generated matrices were categorized as ID matrices. 
Once the matrix was verified as ID matrix, then it was ready to solve.  
 
The results of MATLAB for primal and dual solution are tabulated in Table 3. 
Similar to the findings in [12], some LP problems converged to optimal 
solution while some of the LP problems failed to get optimal solution, which 
indicated the duality gap between the LP solutions. 

 
Table 3: Samples of primal and dual solutions 

Characteristics ID Random 
Square 
Matrix 

Primal LP Solution for ID Random Non-symmetric Square Matrix 
𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒 𝒙𝒙𝟓𝟓 𝒇𝒇𝒙𝒙 

Matrix with 
different sign of 
leading 
principal minors 

1st 20.9735 6.5242 0 31.5367 35.6819 5666.386 
2nd 1.0e+016 4.77e+0

16 
0 0 9.62e+016 1.14e+019 

ID Random 
Square 
Matrix 

Dual LP Solution for ID Random Non-symmetric Square Matrix 
𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒚𝒚𝟒𝟒 𝒚𝒚𝟓𝟓 𝒇𝒇𝒚𝒚 

1st 23.72489 1.9299 0 19.3906 35.3134 5666.386 
2nd 9.8454 0 12.8624 0 17.0124 2444.798 

Matrix with 
alternate sign of 
leading 
principal minors 
with all positive 

ID Random 
Square 
Matrix 

Primal LP Solution for ID Random Non-symmetric Square Matrix 
𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒 𝒙𝒙𝟓𝟓 𝒇𝒇𝒙𝒙 

1st 0 13.6502 2.5653 0.8324 13.9503 1231.953 
2nd 0 1.1498 0.8228 4.3694 0 503.135 
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optimal solution, which indicated the duality gap between the LP 
solutions. 
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Matrix with different sign of leading 
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1st 10 -160 46 -22150 -100075 

2nd -14 -44 263 -2922 227841 

Matrix with alternate sign of leading 
principal minors with all positive sign of 
off-diagonal entries 

1st 29 -553 15856 -90251 113571 

2nd 17 -202 3077 -57741 1382921 

Matrix with alternate sign of leading 
principal minors with random sign of off-
diagonal entries 

1st 24 -554 8192 -58804 469476 

2nd 8 -190 3214 -43530 665867 

 
All matrices in Table 2 fulfilled the characteristics of the ID matrix. A number 
of matrices consisted of negative value for even orders while other matrices 
involved alternate sign of leading principal minors with strictly positive at 
odd orders and strictly negative at even orders. Those characteristics 
indicated the generated square matrices failed the definiteness and semi-
definiteness test sign.  
 
Based on the results, the quadratic form test of these ID matrices involved 
both negative and positive numbers. Each square matrix might give positive 
and negative results of quadratic form test. Besides, the eigenvalues test 
showed that the eigenvalues for all matrices consisted both positive and 
negative values, thus, the generated matrices were categorized as ID matrices. 
Once the matrix was verified as ID matrix, then it was ready to solve.  
 
The results of MATLAB for primal and dual solution are tabulated in Table 3. 
Similar to the findings in [12], some LP problems converged to optimal 
solution while some of the LP problems failed to get optimal solution, which 
indicated the duality gap between the LP solutions. 
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All matrices in Table 2 fulfilled the characteristics of the ID matrix. A 
number of matrices consisted of negative value for even orders while 
other matrices involved alternate sign of leading principal minors 
with strictly positive at odd orders and strictly negative at even 
orders. Those characteristics indicated the generated square matrices 
failed the definiteness and semi-definiteness test sign.  
 
Based on the results, the quadratic form test of these ID matrices 
involved both negative and positive numbers. Each square matrix 
might give positive and negative results of quadratic form test. 
Besides, the eigenvalues test showed that the eigenvalues for all 
matrices consisted both positive and negative values, thus, the 
generated matrices were categorized as ID matrices. Once the matrix 
was verified as ID matrix, then it was ready to solve.  
 
The results of MATLAB for primal and dual solution are tabulated in 
Table 3. Similar to the findings in [12], some LP problems converged 
to optimal solution while some of the LP problems failed to get 
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As shown in Table 3, some variables like x and y produced some 
values while others are 0, but this did not affect the simulation results 
of LP problems. Some ID matrices in the first and third characteristic 
could not achieve optimal solution. The objective solution 𝑓𝑓(𝑥𝑥) of these 
ID matrices involved inconsistency whereby the primal problem was 
unbounded and the constraints were not restrictive enough while no 
feasible starting point was found when computing the dual solution. 
 
For the second characteristic, the objective solution 𝑓𝑓(𝑥𝑥) of the primal 
and dual displayed similar results. All matrices found the optimal 
solution and no duality gap existed. To validate the simulation results 
of MATLAB, the generated data in MATLAB were transferred to 
Lingo Software. Same procedures were replicated in Lingo software 
to attain the solution for primal and dual problems. Table 4 presents 
the results acquired by MATLAB and Lingo Software.  

 
Table 4: Validation of MATLAB results by Lingo software 
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sign of off-
diagonal entries 

ID Random 
Square 
Matrix 

Dual LP Solution for ID Random Non-symmetric Square Matrix 
𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒚𝒚𝟒𝟒 𝒚𝒚𝟓𝟓 𝒇𝒇𝒚𝒚 

1st 2.5645 0 2.4504 14.9656 6.1594 1231.953 
2nd 0 7.8861 4.0245 0 3.9880 503.135 

Matrix with 
alternate sign of 
leading 
principal minors 
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sign of off-
diagonal entries 
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𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒚𝒚𝟒𝟒 𝒚𝒚𝟓𝟓 𝒇𝒇𝒚𝒚 

1st 6.5625 0 0 2.6917 0.4667 418.638 
2nd 60.3488 0 0 27.6047 0 4282.698 

 
As shown in Table 3, some variables like x and y produced some values while 
others are 0, but this did not affect the simulation results of LP problems. Some 
ID matrices in the first and third characteristic could not achieve optimal 
solution. The objective solution 𝑓𝑓(𝑥𝑥)  of these ID matrices involved 
inconsistency whereby the primal problem was unbounded and the 
constraints were not restrictive enough while no feasible starting point was 
found when computing the dual solution. 
 
For the second characteristic, the objective solution 𝑓𝑓(𝑥𝑥) of the primal and 
dual displayed similar results. All matrices found the optimal solution and no 
duality gap existed. To validate the simulation results of MATLAB, the 
generated data in MATLAB were transferred to Lingo Software. Same 
procedures were replicated in Lingo software to attain the solution for primal 
and dual problems. Table 4 presents the results acquired by MATLAB and 
Lingo Software.  

 
Table 4: Validation of MATLAB results by Lingo software 

Characteristics ID Random 
Square Matrix 

Primal in 
MATLAB 

Primal in 
Lingo 

Dual in 
MATLAB 

Dual in 
Lingo 

Matrix with different sign of leading 
principal minors 

1st 5666.386 5666.386 5666.386 5666.386 
2nd 1.139e+019 1.0e+030 2444.798 213.867 

Matrix with alternate sign of leading 
principal minors with all positive sign 
of off-diagonal entries 

1st 1231.953 1231.953 1231.953 1231.953 

2nd 503.135 503.135 503.135 503.135 

Matrix with alternate sign of leading 
principal minors with random sign of 
off-diagonal entries 

1st 1.93e+018 1.0e+030 418.638 37.728 

2nd 4282.698 4282.698 4282.698 4282.698 

 
3.2 Discussion 
By referring to Table 4, some of the ID non-symmetric square matrices find 
the optimal solution for primal and dual problems by providing same 
objective function value in both softwares whereas in some ID non-symmetric 
square matrices, duality gap exists. Therefore, those matrices cannot obtain 
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As shown in Table 3, some variables like x and y produced some 
values while others are 0, but this did not affect the simulation results 
of LP problems. Some ID matrices in the first and third characteristic 
could not achieve optimal solution. The objective solution 𝑓𝑓(𝑥𝑥) of these 
ID matrices involved inconsistency whereby the primal problem was 
unbounded and the constraints were not restrictive enough while no 
feasible starting point was found when computing the dual solution. 
 
For the second characteristic, the objective solution 𝑓𝑓(𝑥𝑥) of the primal 
and dual displayed similar results. All matrices found the optimal 
solution and no duality gap existed. To validate the simulation results 
of MATLAB, the generated data in MATLAB were transferred to 
Lingo Software. Same procedures were replicated in Lingo software 
to attain the solution for primal and dual problems. Table 4 presents 
the results acquired by MATLAB and Lingo Software.  
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As shown in Table 3, some variables like x and y produced some values while 
others are 0, but this did not affect the simulation results of LP problems. Some 
ID matrices in the first and third characteristic could not achieve optimal 
solution. The objective solution 𝑓𝑓(𝑥𝑥)  of these ID matrices involved 
inconsistency whereby the primal problem was unbounded and the 
constraints were not restrictive enough while no feasible starting point was 
found when computing the dual solution. 
 
For the second characteristic, the objective solution 𝑓𝑓(𝑥𝑥) of the primal and 
dual displayed similar results. All matrices found the optimal solution and no 
duality gap existed. To validate the simulation results of MATLAB, the 
generated data in MATLAB were transferred to Lingo Software. Same 
procedures were replicated in Lingo software to attain the solution for primal 
and dual problems. Table 4 presents the results acquired by MATLAB and 
Lingo Software.  
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MATLAB 
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Matrix with different sign of leading 
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2nd 1.139e+019 1.0e+030 2444.798 213.867 

Matrix with alternate sign of leading 
principal minors with all positive sign 
of off-diagonal entries 

1st 1231.953 1231.953 1231.953 1231.953 
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off-diagonal entries 

1st 1.93e+018 1.0e+030 418.638 37.728 
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3.2 Discussion 
By referring to Table 4, some of the ID non-symmetric square matrices find 
the optimal solution for primal and dual problems by providing same 
objective function value in both softwares whereas in some ID non-symmetric 
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3.2 Discussion 
By referring to Table 4, some of the ID non-symmetric square matrices 
find the optimal solution for primal and dual problems by providing 
same objective function value in both softwares whereas in some ID 
non-symmetric square matrices, duality gap exists. Therefore, those 
matrices cannot obtain the optimal solution.  
 
 
Based on the Duality theorem, for any couple of dual problem, the LP 
solution can either be optimal, infeasible or unbounded solution. 
Strong Duality stated that if solution couple (𝑥𝑥, 𝑦𝑦) of the two problems 
has the feature that𝑓𝑓(𝑥𝑥)  =  𝑣𝑣(𝑦𝑦) , then x is said to be the optimal 
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3.2 Discussion 
By referring to Table 4, some of the ID non-symmetric square matrices 
find the optimal solution for primal and dual problems by providing 
same objective function value in both softwares whereas in some ID 
non-symmetric square matrices, duality gap exists. Therefore, those 
matrices cannot obtain the optimal solution.  
 
 
Based on the Duality theorem, for any couple of dual problem, the LP 
solution can either be optimal, infeasible or unbounded solution. 
Strong Duality stated that if solution couple (𝑥𝑥, 𝑦𝑦) of the two problems 
has the feature that𝑓𝑓(𝑥𝑥)  =  𝑣𝑣(𝑦𝑦) , then x is said to be the optimal 

Journal of Advanced Manufacturing Technology 

 

 

solution of primal LP problem and y is the best solution of dual LP 
problem. For weak duality, if primal LP problem does not have any 
finite optimization, then dual LP problem does not have any 
acceptable solutions and vice versa [18].  
 
All matrices generated in this study were non-singular matrix and it 
can be called as full-rank matrix [19]. All the matrices were invertible 
and each constraint represented by the row in matrix was 
independent to each other [20]. In this experiment, some matrices 
could achieve optimal solution. Hence, it can be concluded that non-
singular matrices do not guarantee the optimality of the duality LP 
solutions. Another finding in this paper is identifying the patterns of 
the ID random non-symmetric matrix that guarantee optimal solution 
and the features can be attained. Table 5 shows the characteristics of ID 
random non-symmetric square matrix. 
 

Table 5: Characteristics of ID random non-symmetric square matrix 
Criteria Pattern 

Diagonal 
entries 

i. First diagonal entry is positive and 
remaining diagonal entries are negative. 

ii. All positive off-diagonal entries. 
Leading 
principal 
minors 

i. Negative value at the even orders and 
positive value at the odd orders of leading 
principal minor. 

 
The first diagonal entry should be positive and the remaining 
diagonal entries should be negative to allow the generated matrices 
which consisted of the alternate sign of leading principal minors. The 
entries beside diagonal or known as off-diagonal entries must be 
positive. Random sign of off-diagonal entries can influence the value 
of determinants of leading principal minors. These findings allow the 
researchers to gain an in-depth understanding of the characteristics of 
ID random non-symmetric square matrices that could provide 
optimal solution. 
 
4.0 CONCLUSION 
Based on simulations results and validation of the primal-dual LP 
solutions, it can be concluded that ID square matrices could provide 
optimal solution to the LP problems or it may present duality gap and 
no optimal solution is revealed. Symmetric and non-symmetric ID 
random square matrices provide similar LP solutions. Although all 
generated ID non-symmetric square matrices are non-singular matrix, 
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but only certain matrices could achieve optimal solution. Hence, the 
non-singular matrix does not guarantee the optimality of LP 
solutions.   
 
For those ID non-symmetric square matrices that achieve optimal 
solution, these solutions agree with the theory of strong duality. If the 
ID non-symmetric square matrices with duality gap between the 
primal and the dual solutions or no optimal solution exists, the dual 
solutions are infeasible and these duality fit to the weak duality 
theorem. An ID square matrix can accomplish optimal solution to the 
LP problems if the first diagonal entry of the matrix is positive and the 
remaining diagonal entries are negative, with all positive off-diagonal 
entries. The determinants of the leading principal minors consist of 
negative value at even orders and positive value at odd orders which 
fulfill the condition of the ID matrix.  
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but only certain matrices could achieve optimal solution. Hence, the 
non-singular matrix does not guarantee the optimality of LP 
solutions.   
 
For those ID non-symmetric square matrices that achieve optimal 
solution, these solutions agree with the theory of strong duality. If the 
ID non-symmetric square matrices with duality gap between the 
primal and the dual solutions or no optimal solution exists, the dual 
solutions are infeasible and these duality fit to the weak duality 
theorem. An ID square matrix can accomplish optimal solution to the 
LP problems if the first diagonal entry of the matrix is positive and the 
remaining diagonal entries are negative, with all positive off-diagonal 
entries. The determinants of the leading principal minors consist of 
negative value at even orders and positive value at odd orders which 
fulfill the condition of the ID matrix.  
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