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ABSTRACT: This paper provided a review on wind turbine technology 
and control. The technologies, differences, advantages and disadvantages 
of horizontal and vertical axis wind turbine structures were reported. The 
control strategies of wind turbine such as fixed speed and variable speed 
were also discussed along with the wind turbine distribution profile for both 
vertical and horizontal axis configuration. The aim is to cover the appropriate 
wind turbine structures and control strategies to be used in the certain area 
condition. Regardless similar wind speed distribution profile except the 
power coefficient, horizontal axis wind turbine (HAWT) and vertical axis 
wind turbine (VAWT) have different structures and control strategies. As a 
conclusion, HAWT structure is less suitable for urban area as compared to 
VAWT nevertheless is more appropriate for large-scale wind farm. For the 
control approach, variable speed wind turbine (VSWT) is more appropriate 
for high wind speed area due to its ability to achieve maximum efficiency as 
compared to a fixed speed wind turbine (VSWT).

KEYWORDS: Vertical Axis Wind Turbine; Horizontal Axis Wind Turbine; Variable 
Speed; Fixed Speed

1.0 INTRODUCTION

In European countries, research and development of wind turbine 
technology is rather encouraging [1]. However, in Southeast Asian 
continent, the development in wind turbine technology is rather slow. 
Few studies on evaluation of wind energy feasibility in Southeast 
Asian continent have been reported. For instance, wind turbine 
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feasibility studies in Malaysia emphasize few regions with high 
wind speed. Mersing, Kota Bharu, Kuala Terengganu, Langkawi and 
Penang are listed as potential location for harversting wind energy 
[2]. In addition, Kota Belud, Kudat, Langkawi, Gebeng and Kerteh are 
the best wind sites with the range of 2450 to 3750 MWh/year [3]. In 
[4], Mersing was reported to have power density from 10 to 26 W/m² 
which verified it as a promising location for generating wind power. 
In addition, Temburong Island is a potential wind power harvesting 
location in Brunei [5]. Moreover, in Myanmar, 360.1 TWh/year wind 
energy available in high land area of Chin and Shan States, littoral 
area and west region [6] whereas 120 W/m² power density in Arakan, 
125 W/m² in Pathien, 100 W/m² in Yangon, and 130 W/m²  in Ye were 
recorded [7]. Besides, Indonesia has potential wind energy of 3 to 6 m/s 
[8]. These studies prove that Southeast Asian continent has potential in 
developing wind farm.

Previous studies [9–17] have recorded several advantages that lead 
to the increasing research and development activities involving wind 
turbine as well as it shortcomings. The main benefit of wind turbine 
technology is due to its ubiquitous energy resources. Wind turbine is 
also ecologically friendly as no greenhouse gas or heat emission being 
released into the atmosphere. Besides, it can be built on existing farms or 
ranches without disturbing the activities operating in that area because 
the wind turbine only requires a fraction of the land. Furthermore, 
servicing and repairing process of wind turbine can be performed 
individually without shutting down the whole wind farm. Apart from 
the advantages, the wind turbine records several shortcomings such 
as noise produced by the turbine’s blade. Moreover, it might also 
causes aesthetic pollutant to the landscape. Furthermore, the spinning 
blade is dangerous to local wildlife as birds might be killed. To-date, 
technological improvement has reduced this problem. Besides, as the 
turbine is often installed in remote area, transmission lines are required 
to dispatch the electricity from the wind farm to the city that can incur 
high cost.

Wind turbine converts kinetic energy from the winds into electrical 
energy. The principle operation of wind turbine is the kinetic energy 
of the winds turn the rotor blades and produces mechanical rotational 
power. The main shaft connects the rotor to the generator. Then, the 
turning shaft will spin the generator that produces electricity [10], [18–
23]. Main components of wind turbine are rotor, tower, foundation, 
and nacelle. The nacelle consists of generator, gearbox, and control and 
protection system [10, 18-19, 24]. The rotor consists of a hub, blades 
and pitch where the kinetic energy from the wind is aerodynamically 



ISSN: 1985-3157        Vol. 11     No. 2   July - December 2017

Review on Wind Turbine Technology and Control

89

converted into mechanical energy through shaft. The rotor is raised 
high in the air by the tower which connects to the foundation to find 
higher speed winds and maintain vibration within wind speed changes 
as well as to hold the nacelle. The foundation supports the entire wind 
turbine to ensure it is firmly fixed onto the ground or the roof. The 
generator is to convert mechanical energy into electrical energy. The 
gearbox is used to increase the rotor rotational speed towards the 
required generator rotational speed. The control and protection system 
acts as a safety feature to ensure that the turbine does not operate under 
stressed condition as it includes a braking system triggered by the 
higher wind speed signal by means of under excessive wind gust, such 
as the rotor stops. Wind turbine applies wind energy conversion system 
(WECS) which consists of a mechanical power control (MPC) side and 
electrical power control (EPC) side as shown in Figure 1. However, 
power converter is not required in a fixed speed wind turbine system 
as this configuration produces constant voltage and frequency. WECS 
are dependent on wind flow dynamics which are highly nonlinear, 
non-deterministic and have chaotic behavior. Besides, the most 
striking characteristic of wind flow that bothers control engineers is 
its variability. EPC side of the system demands maximum mechanical 
power from the MPC side despite wind intermittent and seasonal 
interference.
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Figure 1: Wind energy conversion system (WECS)

Wind turbine can be categorized based on the structures and the control 
strategies which will be explained in section 2.0 and section 3.0. Section 
4.0 describes distribution profile of wind turbine. This review aimed to 
cover appropriate wind turbine structures and control strategies to be 
used in certain locations subject to the area conditions. 
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2.0 WIND TURBINE STUCTURE

Wind turbines are commonly classified into horizontal axis wind 
turbines (HAWT) and vertical axis wind turbines (VAWT) as shown 
in Figure 2. The classification is made based on the structure and the 
rotor shaft orientation of such configuration [25]. The main rotor shaft, 
gearbox and generator of HAWT are placed on top of the tower with 
the main rotor shaft’s orientation is parallel to the wind direction. In 
VAWT, the main rotor shaft which is perpendicular to the wind direction 
is located on top of the turbine while the gearbox and generator are 
located near the turbine foundation [10, 26–28].

VAWT is considered as a less viable alternative for distribution 
due to its efficacy [29]. According to aerodynamic and mechanical 
characteristic, VAWT can be classified into two categories namely drag-
based Savonius and the lift-based Darrieus. The drag-based Savonius 
is the simplest form of wind turbine with two or three scoops. The drag 
concept causes it to move more when moving with the wind and less 
when moving againts the wind [30]. On the other hand, the lift-based 
Darrieus is powered by the airfoil’s lifted forces which is actuated by 
a powered motor because it has no self-starting mechanism [30]. The 
structure of VAWT makes it more appropriate for urban application as 
the turbine allows it to accept wind from any direction [10, 25-26, 29, 
31–33], produce less noise compared to HAWT [25-26, 29, 34], operate 
in low wind speed [29, 32], perform better in turbulent wind flow [25, 
29, 34] and require less space [25]. On the other hand, the structure 
also gives advantage in maintenance process [25, 34]. The efficiency of 
the VAWT is depending on the control strategy that can be either fixed 
pitch or variable pitch. VAWT variable pitch has higher efficiency as 
compared to VAWT fixed pitch [29]. Furthermore, VAWT variable pitch 
is able to self-start during low wind speed while VAWT fixed pitch is 
unable to do [29].
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Many researchers such as [10] and [35–37] are focusing on HAWT 
improvement due to the efficacy for large-scale production as compared 
to VAWT. Although HAWT has taller structure, the blades are attached 
to the center of gravity of the turbine which helps in stability. There 
are two types of HAWT; upwind wind turbine and downwind wind 
turbine. The rotor location of the upwind wind turbine is facing the 
wind while the downwind wind turbine is located on the downwind 
side (lee side) of the tower. Contrary to VAWT,  HAWT requires yaw 
mechanism to assure that the rotor is facing towards wind consistently 
[38]. However, the movement produces undesirable noise. The yaw 
mechanism and tall tower helps the turbine to capture maximum wind 
power. However, HAWT is not suitable for urban area because of the 
noise emission and the structure that cause it difficult for installation 
and maintenance process [39].

3.0 WIND TURBINE CONTROL STRATEGIES

Fixed speed wind turbine (FSWT) is developed earlier than variable 
speed wind turbine [40]. In early development, FSWT system has 
been given more attention due to robustness, inexpensive and simple 
structure. FSWT does not need power converter as the generator is 
directly connected to the grid [19, 41]. As such, induction generator 
is utilized as the generating system for FSWT. Thus, FSWT uses 
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aerodynamic power to control the system that varies from pitch 
control, stall control or active stall control. However, power fluctuation 
produced by the system cancels the cost reduction [41-42]. In a FSWT, the 
rotor speed remain constant for all wind speeds, thus producing poor 
power quality and increasing mechanical drive train load [19, 40–42]. 
However, as the size of turbine increases and due to wind intermittent, 
the inherent problems of the FSWT become more pronounced.

Variable speed wind turbine (VSWT) allows the rotor and wind speed 
to be matched with the aim of maintaining its optimum tip-speed 
ratio (TSR) for maximum efficiency [19, 43-44]. TSR is the ratio of 
the blade tip-speed and wind speed. However, the electrical power 
control system is more complex because power converter is required 
in between the generator and the grid that can cause power electronics 
losses and increase the installation cost [45]. The arrangement of 
power converter in VSWT can be categorized into partially rated 
power converter and full scale power converter. In wind turbine with 
partially rated power converter (dynamic slip-controlled wounded 
rotor induction generator and doubly fed induction generator) the 
generator stator is directly connected to the grid while the generator 
rotor is connected to the power converter, indicating only parts of the 
power produced are supplied into the power converter. Contrary to 
full scale power converter (synchronous generators and induction 
generators without rotor winding), the power converter is connected 
between the generator stator and the grid, hence, the total power 
produced is fed into the power converter. In modern WECS, studies 
in VSWT are blossoming. To-date, researchers produce VSWT control 
structure using linear parameter varying [46], linear parameter varying 
with anti-windup [47], sliding mode control [48], nonlinear static and 
dynamic state feedback controller [49], full state-feedback [50-51] and 
many more. Studies [43, 52] address the advantages of variable speed 
wind turbines such as the possibility to control the turbine rotor speed 
which helps in reducing drive train loads, hence, allowing the system 
to operate asymptotically to its optimum tip-speed ratio, increasing 
energy capture and maximizing energy generation.

Both FSWT and VSWT can be augmented with additional control 
strategies such as fixed pitch or variable pitch control. Variable pitch 
control allows the pitch angle to be remotely changed to ensure 
maximum wind energy is captured. The pitch control also helps in 
preventing wind turbine from being damaged by decreasing the 
turbine power coefficient when the wind speed is too high.  However, 
the system is more complex and expensive especially when the size of 
wind turbine is larger.
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4.0 WIND TURBINE DISTRIBUTION PROFILE

Regardless of the structure, the energy conversion of wind turbine 
depends on the turbine wind speed and swept area, A. The 
instantaneous power produced by the wind is the kinetic energy’s rate 
of change and is expressed as Pwind

 =  where v is the wind speed, 
and ρ is the air density. The multiplication of power coefficient 
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and the pitch angle,β . The power coefficient characteristic for various pitch angle,β  is 
as shown in Figure 3 [53].  
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For fixed-pitch system, the pitch angle, β is regulated at 0°. Maximum 
power coefficient that HAWT can achieve is 0.59 while VAWT can 
achieve power coefficient approaching 0.4 [38]. For variable-pitch 
system, the power coefficient varies due to the pitch angle of the blade. 
However, the maximum power coefficient is still limited to the value of 
Betz limit which is 0.59.

5.0  CONCLUSION 

HAWT is not suitable for urban area as compared to VAWT because 
of the noise emission and the structure itself that causes difficulties 
in installation and maintenance process. However, the structure and 
efficacy of HAWT is appropriate for large-scale wind farm as compared 
to VAWT. Apart from the structure, the performance of the wind 
turbine also depends on the control strategies. FSWT is not applicable 
for high wind speed area as compared to VSWT. VSWT allows the 
rotor to be matched to the wind speed in order to achieve maximum 
efficiency. Regardless of the structure, the wind turbine distribution 
profiles for both HAWT and VAWT are similar except for the power 
coefficient. In future, appropriate wind turbine structure and control 
can be determined to develop wind farm in the potential wind energy 
region such as in the South East Asian continent.
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