
ISSN: 1985-3157        Vol. 6     No. 2     July-December 2012

Machining Model of Ti-6Al-4V Titanium Alloy Using Fem Simulation

1

MACHINING MODEL OF TI-6AL-4V TITANIUM ALLOY USING
FEM SIMULATION

Hadzley, M.M.A., Raja Izamshah, R.A., Amran, M.M.A.

Department of Manufacturing Process, 
Faculty of Manufacturing Engineering, 
UniversitiTeknikal Malaysia Melaka, 

Hang Tuah Jaya, 76100 
Durian Tunggal, Melaka, Malaysia

Email: hadzley@utem.edu.my  

ABSTRACT:  This paperpresents a machining modelof Ti-6Al-
4V titanium alloy using finite element method (FEM) simulation. 
The constitutive Johnson–Cook material flow stress was employed 
to predict material plasticity, chip morphology, cutting forces and 
stress distribution. Comparative analysis for both simulation and 
experimental data were carried out. The simulated results show 
that workpiece material flow around the cutting edge of the tool 
and deposited themselves to form a continuous curl chip formation. 
The stress distribution generated in the shearing plane during 
steady state conditions and the residual stress is formed beneath 
the machined surface.The cuttingforces were essentially constant 
across the range of cutting speeds. This agreedwith the trend from 
the experimental trials.
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1.0 INTRODUCTION

Since their introduction in the early 1950s, Ti-6Al-4V alloys have become 
the backbone materials of choice for aerospace, marine, medical and 
other major industrial applications. The combination of high strength-
to-weight ratio, excellent mechanical properties and corrosion resistance 
have led to titanium alloys being used in a wide and diversified range 
of successful applications (Ezugwu, E. O., Bonney, J. and Da Silva, R. 
B., 2007) However, this material is known to be difficult to machine due 
to its low thermal conductivity which gives rise to high temperatures 
at the tool–chip and tool-workpieceinterfaces. Therefore, the cutting 
process of Ti-6Al-4V is associatedwith complex physical phenomenon 
which is difficult to comprehend by direct experimental alone.
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Over the past two decades, finite element method (FEM)has been used 
extensively in the investigation of machining processes.Some of the 
commercial softwaresthat cansimulate machining process are Nike2D, 
Abaqus, Marc, Deform, Forge, Algor, Fluent, AdvantedgeandLs-
Dyna(Soo, S.L. and Aspinwall, D.K., 2007). Early simulations of 
machining processes were carried out by Usui and Shirakashi (Usui, E. 
and Shirakashi, T., 1982) by analyzing steady-state orthogonal cutting. 
Carroll and Strenkowski (Carroll, J.T. and Strenkowski, C., 1998),  
attempted chip formation and separation from the workpiece. Hua and 
Shivpuri (Hua, J. and Shivpuri, R., 2004),  simulated chip formation 
of machining based on deformation energy-based criterion (Umbrello, 
D., 2008)focussedon damage criterion and friction to simulate chip 
morphology during machining. To deal with large element distortion, 
(Rui, L. and Shih, A. J., 2006),developed 3D model to simulate chip 
formation during machining.(Calamaz et.al 2008), Calamazmodified 
the Johnson-Cook constitutive model to simulate serrated chip 
formation. Many studies have described the stability and thesimulation 
of the machining process for hardened metal and high strength alloy. 
However, few works consider the machining simulation of Ti-6Al-4V 
alloy.

In this study, FEM machining simulations of Ti-6Al-4V alloy is carried 
out using commerciallyavailable software Ls-Dyna 4.21. The purpose of 
the study is to understand the underlying mechanism when machining 
Ti-6Al-4V alloy. A simulation model of machining process have been 
developed based on the Lagrangian formulation with Johnson-Cook 
plasticity model. Experimental chip formation, together with cutting 
force data were compared with the predicted output from the model. 
Correct simulation of the cutting process enables good predictions in 
terms of chip formation, strain and stress distribution at the cutting 
interfaces. This will contribute to significant cost reduction for 
machining process optimisation which at the moment is still carried 
out experimentally.

2.0 METHODOLOGY

2.1  Finite element model

Figure 1 shows the FEM model for the cutting process. Lsprepost 2.1 
was used to prepare finite element mesh. The workpiece material was 
built from 8012 nodes and 3000 element while the cutting tool was built 
from 2134 nodes and 768 elements. Boundary conditions were applied 
on the bottom and right side nodes of the workpiece and the tool was 
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constrained against vertical displacement and rotation. The total time 
of simulated machining process was 2.0mswith cutting speeds varied 
from 110 m/min to 130 m/min and feed rateconstant at 0.15 mm/rev. 
For simplicity, a cutting tool was modelled as rigid and the coefficient 
of friction between cutting tool and workpiece material was assumed 
to be 0.3 based on the coulomb friction law.

 
 

Figure1 FEM model for the cutting process 
 
2.2 Material Properties 

 

To describe the material response, the constitutive model proposed by Johnson-Cook was 

utilized in this study. Johnson-Cook material model is expressed by 
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where σ is the flow stress, ε is the plastic strain, ε’ is the strain rate, ε’o is the reference plastic 

strain, T is the workpiece temperature, Tmeltis the melting temperature of the workpiece 

material and To is the room temperature. The constant coefficient A is the yield strength, B is 

the hardening modulus, C is the strain rate sensitivity coefficient, n is the hardening 

coefficient and m is the thermal softening coefficient. All parameters used in this study were 

determined by Lee and Lin (Lee, W.S. and Lin, C.F., 1998),  as shown in Table 1. 
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2.3 Experimental Setup and Verification 

 

The results of FEM models were verified with the machining trials of commercially available 

Ti-6Al-4V alloy. Setup for the machining tests is shown in Figure 2(a). The component forces 

were measured using a dynamometer with oscilloscope as shown in Figure2(b). The 

following cutting conditions were employed in this investigation: 

Cutting Speed (m/min):  110, 120 and 130 
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where σ is the flow stress, ε is the plastic strain, ε’ is the strain rate, ε’o 
is the reference plastic strain, T is the workpiece temperature, Tmelt is 
the melting temperature of the workpiece material and To is the room 
temperature. The constant coefficient A is the yield strength, B is the 
hardening modulus, C is the strain rate sensitivity coefficient, n is the 
hardening coefficient and m is the thermal softening coefficient. All 
parameters used in this study were determined by Lee and Lin (Lee, 
W.S. and Lin, C.F., 1998),  as shown in Table 1.
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Figure 2 Experimental setup for machining verification. (a) Machining 
setup (b) Dynamometer complete with oscilloscope for recording 

cutting forces.

3.0 RESULTS AND DISCUSSIONS

3.1 Simulation Results

The result of the initial chip formation when modelling of machining 
Ti-6Al-4V is shown in Figure 3.It is clearly shown thatheavy plastic 
deformation was visible around the region where the cutting tool 
penetrated into the workpiece. This region is characterized by the 
relatively large mesh distortion wheremeshesthat sufficiently strained 
around 0.3 were automatically deleted to facilitate chip separation. It 
can be seen from Figure3 that the deformation of the chip distorted 
heavily at the initial contact point (Figure 3a),then increasing sharply 
along tool rake face (Figure 3b) and dropping quickly to form a 
continuous chipcurl (Figure 3c). 
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Figure 4 shows the comparison between experimental and FEM 
resultsfor the chip curl when machining T-6Al-4Valloy at110 m/min 
speed.Qualitatively, the morphology of thechip curl obtained from 
experiment (Figure 4(a)) and FEMmodel (Figure 4(b)) is generally 
similar. The chip flow directionis also similar for both the simulated 
andexperimentaldata.However, the finite element methodtends to 
under-predict the diameter of the experimental chip curlby about 33-
41% as shown in Table 4. One possible cause according to Rui and Shih 
(Rui, L. and Shih, A. J., 2006), is the contact condition of the chip with 
the toolandworkpiece during machining. In actual machining,contact 
conditionsuch as chamfer and tool nose radius significantly affect the 
contact length and width of the chips in lateral and axial directionswhile 
in finite element modelling, especially in 2D, contact between the tool 
and the workpiece was simplified from the friction, flow stress and 
cutting parameters.
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3.2	 Cutting	Forces

Figure 5 shows the plots of recorded cutting forces from the 
experimental tests and those from the simulations. The value of cutting 
forces is fluctuated due to the instability of chip-tool contact resulting 
from tool geometry and elasticity of work material as shown in Figure 
7. The cutting forces recorded experimentally ranged from 200-208 N 
whereas, the simulated cutting forces ranged from 180-184 N as shown 
in Figure 6. On average, the simulated data were generally lower than 
the experimental data by 11 %. The difference between experimental 
and simulation results appear to be reasonable since the FEM modelis 
developed with some simplifications and constant assumptions have 
been introducedsuch as friction coefficient and material constitutive 
model(Yung-Chang, Y., et.al., 2004)
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3.3 Stress Distribution

Figure 7 shows the distribution of stress in the work material after 0.005 
s machining for 110 m/min. From the stress field contour plots, one can 
observe that plastic deformation occurs in three regions: the primary 
deformation zone which stretches from the tool tip to the free surface of 
the workpiece; the secondary deformation zone which occurs along the 
rake face of the cutting tool and the tertiary deformation zone which 
occurs under the tool–chip interface.The primary deformation zone 
represent the adiabatic shear plane in cutting zone where large stresses 
are imparted to the chip. In particular, it is noted that chip materials just 
ahead of the tool tip experience a high level of stress against the tool, 
which reflect the abrasive action of the chip upon the tool tip (Lee W. S. 
and Lin C. F., 1998). The secondary deformation zone illustrates sliding 
motion of the chip on the rake face of the tool. Contact instabilities 
appeared in this zone as a result of complex interaction between friction, 
temperature generation and thermal softening of the work material 
(Lee,  W. S. and Lin, C. F., 1998). This situation induces fluctuation in 
cutting force and represents the action of adhesive wear in the tool-
chip interface (Lee, W. S. and Lin, C. F., 1998). The tertiary deformation 
zone illustrates stress in the workpieceoccured just below and behind 
the tool tip. The stresses still remain in the surface of the machined 
workpiece even when the cutting tool is far away from the shearing 
point. This stress is expected to have a strong influence on the formation 
of residual stresses in the workpiece. Excessive residual stressaffectsthe 
surface integrity causing surface alteration, microhardnes changes and 
decreased fatigue life of the machined components (Ezugwu, E. O., 
Bonney, J. and Da Silva, R. B., 2007).
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with experimental data. Results obtained indicate that a reasonable prediction of chip 

morphology and cutting forces for both experimental and simulation. The machining 

simulation illustrates the distribution of stress in the primary, secondary and tertiary 

deformation zones which represent the interaction of cutting tool and work material during 

machining. The FE strategy proposed in this paper generally can be employed to study the 

machining process of Ti-6Al-4V alloy and to predict the cutting forces and the chip formation 

with reasonable accuracy.  
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Figure7 Stress contours from the simulation after 0.005 s for 110 m/min 
cutting speed



ISSN: 1985-3157        Vol. 6     No. 2     July-December 2012

Journal of Advanced Manufacturing Technology

8

4.0 CONCLUSIONS

This paper presents a modellingof machining of Ti-6Al-4V titanium 
alloy FEM simulation. The Johnson–Cook’s constitutive equation 
was implemented and the results were compared with experimental 
data. Results obtained indicate that a reasonable prediction of chip 
morphology and cutting forces for both experimental and simulation. 
The machining simulation illustrates the distribution of stress in the 
primary, secondary and tertiary deformation zones which represent the 
interaction of cutting tool and work material during machining. The FE 
strategy proposed in this paper generally can be employed to study the 
machining process of Ti-6Al-4V alloy and to predict the cutting forces 
and the chip formation with reasonable accuracy. 
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