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ABSTRACT: This paper presented an analytical investigation of the 
buckling behavior of cylindrical shells under a combined action of thermal 
and mechanical loadings based on the general form of Green’s strain tensor 
in curvilinear coordinates. While the shell was subjected to lateral pressure, 
it was assumed to be under either a uniform temperature increase or a 
uniform temperature gradient. A dimensionless load interaction parameter 
was considered to express the ratio of thermal and mechanical loads. The 
system of governing equations was derived using the harmonic series and 
was optimized with respect to harmonic numbers to find the critical buckling 
loads of the cylindrical shells. Results were calculated for both the Donnell 
and Green-types of kinematic nonlinearity. Comparison studies showed that 
both types of kinematic nonlinearity predicted the same critical buckling loads 
for thin cylindrical shells whereas for moderately thick cylindrical shells, the 
latter type of kinematic nonlinearity predicted higher critical buckling loads 
than the former type of kinematic nonlinearity.  
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1.0 INTRODUCTION

Cylindrical shells are important structural elements in marine vessels, 
aerospace structures and piping systems. Buckling characteristics of 
these structural elements are an extremely important factor in their 
design process. Various theoretical and numerical techniques have 
been proposed to contribute to this challenging task. Earlier works on 
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the stability of cylindrical shells were carried out by Donnell in 1934 
[1-2]. He presented a simple formula for critical buckling loads of 
isotropic cylindrical shells under axial compression [1] and torsion [2]. 
Later on, by introducing extra additional terms in kinematic relations, 
modified forms of Donnell shell theory were introduced [3-5]. Shear 
deformation shell theories were then developed for thick-walled shells 
by accounting transverse shear stresses in the shell theory [6-7]. An 
overview of these activities is given in [8-11]. Nevertheless, as stated in 
[12] and [13], in many studies on the buckling of shell structures, the 
loading condition has been either thermal or mechanical [14-16] and 
less attention has been paid to the buckling of shell structures under a 
combined action of thermal and mechanical loadings [13,17-19].

This study investigated effect of Green-type kinematic nonlinearity 
on critical buckling loads of thin and moderately thick cylindrical 
shells under combined lateral pressure and thermal loading. The 
displacement field was based on the first order shear deformation 
shell theory including the shear correction factor. Buckling loads are 
obtained for a given load interaction parameter which expresses the 
ratio of thermal and mechanical loads [5,19], thereby reducing double 
parameter stability equations to a single parameter equation. Results 
were calculated for both the Donnell and Green-types of kinematic 
nonlinearity.

2.0 METHODOLOGY

For a cylindrical shell of mean radius R, finite length L, and thickness h, 
the Green’s strain tensor in cylindrical coordinates (x, θ, z) is [20].
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where u, v and w are the axial, circumferential and lateral displacements of the 
cylindrical shell. Based on the Donnell’s hypothesis [1-2], nonlinear terms are 
dependent on axial and circumferential displacements which can be neglected, thus we 
obtain: 
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where u, v and w are the axial, circumferential and lateral displacements 
of the cylindrical shell. Based on the Donnell’s hypothesis [1-2], nonlinear 
terms are dependent on axial and circumferential displacements which 
can be neglected, thus we obtain:
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Based on the first order shear deformation shell theory, the normal 
and shear strains of an arbitrary point of the cylindrical shell from its 
middle surface were given by the following relations [19]:
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The shear correction factor was set equal to 5/6 [21]. Using the variational 
approach [5], the equilibrium equations of cylindrical shells were
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where Nij and Mij (i, j=x, θ) were the stress and moment resultants and Qxz and Qθz were 
the shear stress resultants. According to the adjacent equilibrium criterion [5], for an 
externally loaded cylindrical shell, the total displacements of a neighboring state of 
stability can be summed as the displacement components of equilibrium state and a 
neighboring stable state with respect to the equilibrium position as follows 
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where /m m L , m is the half wave length in the x-direction, n is the wave number in 
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externally loaded cylindrical shell, the total displacements of a neighboring state of 
stability can be summed as the displacement components of equilibrium state and a 
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where /m m L , m is the half wave length in the x-direction, n is the wave number in 
the θ-direction, and Umn, Vmn, Wmn, Xmn and Ymn are undetermined coefficients. Using 
Equations (4)-(6) the stability equations of cylindrical shells under combined loads are 
derived as 
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where µ is the Poisson’s ratio that is assumed to be 0.3 [21]. The equilibrium terms in 
Equations (7a-7e) satisfy the equilibrium condition and therefore drop out of the 
equations. Also, the nonlinear terms of equilibrium state are ignored because they are 
small compared to the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the resulting equation 
could be optimized to find the critical buckling loads.  
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where µ is the Poisson’s ratio that is assumed to be 0.3 [21]. The equilibrium terms in 
Equations (7a-7e) satisfy the equilibrium condition and therefore drop out of the 
equations. Also, the nonlinear terms of equilibrium state are ignored because they are 
small compared to the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the resulting equation 
could be optimized to find the critical buckling loads.  
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where µ is the Poisson’s ratio that is assumed to be 0.3 [21]. The equilibrium terms in 
Equations (7a-7e) satisfy the equilibrium condition and therefore drop out of the 
equations. Also, the nonlinear terms of equilibrium state are ignored because they are 
small compared to the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the resulting equation 
could be optimized to find the critical buckling loads.  
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where µ is the Poisson’s ratio that is assumed to be 0.3 [21]. The equilibrium terms in 
Equations (7a-7e) satisfy the equilibrium condition and therefore drop out of the 
equations. Also, the nonlinear terms of equilibrium state are ignored because they are 
small compared to the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the resulting equation 
could be optimized to find the critical buckling loads.  

 

            (7c)

   

Journal of Advanced Manufacturing Technology (JAMT) 
 
 

   



      
               

 
  

 

2
2 2 2 2

2 2

1 1 1
22

0

e
e

mn xx mn

mn

N
U m n N m n V mn mn

Eh R RR R

W m
R

            (7a) 

 

 


  

 




  
    

 
    

            



 

2
2

2

2 2
2 2

2 2 2 2

1 1
2 2

1 2 (1 ) 0

mn mn

e e
e e
xx mn

nU mn mn V m
R R R

N N n nN m n W N
Eh R R R EhR

     (7b) 

 



 

   

   

    
             

       
                 








2 2
2 2 2 2

2
2 2

2 2

2 1 1 1
2 2

1 1 1 0
2 2

e

mn mn mn

e e
e
xx mn mn

NnU m V n W m n
R R R R R

N N
N m n X m Y n

Eh RR R

     (7c) 

 

    

 

     
       
   

 
   

 

2 2
2 2 2

6 (1 ) 1 6 (1 )
2

1 0
2

mn mn

mn

W m X m n
h R h

Y mn mn
R R

                               (7d) 

 

   

  

    
    

   
  

     
 

2

2
2

2 2

6 (1 ) 1
2

1 6 (1 ) 0
2

mn mn

mn

W n X mn mn
R RRh

nY m
R h

                                   (7e) 

 

where µ is the Poisson’s ratio that is assumed to be 0.3 [21]. The equilibrium terms in 
Equations (7a-7e) satisfy the equilibrium condition and therefore drop out of the 
equations. Also, the nonlinear terms of equilibrium state are ignored because they are 
small compared to the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the resulting equation 
could be optimized to find the critical buckling loads.  
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where µ is the Poisson’s ratio that is assumed to be 0.3 [21]. The equilibrium terms in 
Equations (7a-7e) satisfy the equilibrium condition and therefore drop out of the 
equations. Also, the nonlinear terms of equilibrium state are ignored because they are 
small compared to the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the resulting equation 
could be optimized to find the critical buckling loads.  
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where µ is the Poisson’s ratio that is assumed to be 0.3 [21]. The equilibrium terms in 
Equations (7a-7e) satisfy the equilibrium condition and therefore drop out of the 
equations. Also, the nonlinear terms of equilibrium state are ignored because they are 
small compared to the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the resulting equation 
could be optimized to find the critical buckling loads.  

 

Journal of Advanced Manufacturing Technology (JAMT) 
 
 

   



      
               

 
  

 

2
2 2 2 2

2 2

1 1 1
22

0

e
e

mn xx mn

mn

N
U m n N m n V mn mn

Eh R RR R

W m
R

            (7a) 

 

 


  

 




  
    

 
    

            



 

2
2

2

2 2
2 2

2 2 2 2

1 1
2 2

1 2 (1 ) 0

mn mn

e e
e e
xx mn

nU mn mn V m
R R R

N N n nN m n W N
Eh R R R EhR

     (7b) 

 



 

   

   

    
             

       
                 








2 2
2 2 2 2

2
2 2

2 2

2 1 1 1
2 2

1 1 1 0
2 2

e

mn mn mn

e e
e
xx mn mn

NnU m V n W m n
R R R R R

N N
N m n X m Y n

Eh RR R

     (7c) 

 

    

 

     
       
   

 
   

 

2 2
2 2 2

6 (1 ) 1 6 (1 )
2

1 0
2

mn mn

mn

W m X m n
h R h

Y mn mn
R R

                               (7d) 

 

   

  

    
    

   
  

     
 

2

2
2

2 2

6 (1 ) 1
2

1 6 (1 ) 0
2

mn mn

mn

W n X mn mn
R RRh

nY m
R h

                                   (7e) 

 

where µ is the Poisson’s ratio that is assumed to be 0.3 [21]. The equilibrium terms in 
Equations (7a-7e) satisfy the equilibrium condition and therefore drop out of the 
equations. Also, the nonlinear terms of equilibrium state are ignored because they are 
small compared to the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the resulting equation 
could be optimized to find the critical buckling loads.  
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where µ is the Poisson’s ratio that is assumed to be 0.3 [21]. The equilibrium terms in 
Equations (7a-7e) satisfy the equilibrium condition and therefore drop out of the 
equations. Also, the nonlinear terms of equilibrium state are ignored because they are 
small compared to the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the resulting equation 
could be optimized to find the critical buckling loads.  
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the other terms. The algebraic set of Equations (7a-7e) can be written 
in matrix form. By setting the determinant of the matrix to zero, the 
resulting equation could be optimized to find the critical buckling 
loads. 

Two different thermal loadings are considered in this study, namely 
uniform temperature increase and uniform temperature gradient. 
The pre-buckling axial force for the uniform temperature gradient 
across the shell thickness is 
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cylindrical shells , the critical temperatures obtained by the present study (from both 
types of kinematic nonlinearity) as a result of pure thermoelastic stability analysis are in 
excellent agreement with those obtained according to the Sander’s assumptions [22]. 
However, for moderately thick cylindrical shells, the Green’s strain tensor predicts 
smaller values for critical buckling loads of the cylindrical shells compared to the 
results obtained by the other two hypotheses. It is worth mentioning that the present 
calculations are based on the first order definition of strains while those reported in [22] 
are based on the classical kinematic relations. 

For pure mechanical loading condition, the buckling pressure (kPa) of a Si3N4 
cylindrical shell under internal pressure reported in [23] were taken into consideration. 
As shown in Table 2, for very thin cylindrical shells excellent agreement can be seen 
between the results obtained by the present study and those reported in [23], but for 
R/h=40, higher values of buckling pressure are produced by the Green’s hypothesis. 

Numerical calculations in [23] are obtained based on the third order shear deformation 
shell theory with von Kármán- Donnell type of kinematic nonlinearity. The effect of the 
load interaction parameter is shown in Tables 3 and 4. The numbers in brackets 
indicated the harmonic numbers. As noted in previous section, the critical loads were 
computed for two cases of load interaction parameter. It is found that when a combined 
load was applied to the cylindrical shell and the response of the shell was governed by 
the mechanical load, the variation of critical buckling loads over the shell thickness was 
followed by a marked decrease (note the axial load expressed in terms of pressure 
loading). Furthermore, the smallest value of m should be set to unit value while n 
should be determined by optimization. 
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3.0 RESULTS AND DISCUSSIONS

To demonstrate the efficiency of the proposed methodology, several 
comparison studies were presented for thermal and mechanical 
buckling of cylindrical shells. Table 1 compares the non-dimensional 
critical temperature (αΔTcr) for the uniform temperature increase and 
uniform temperature gradient when an isotopic cylindrical shell is 
subjected to a pure thermal loading. It can be seen from the table that 
for thin cylindrical shells , the critical temperatures obtained by the 
present study (from both types of kinematic nonlinearity) as a result 
of pure thermoelastic stability analysis are in excellent agreement with 
those obtained according to the Sander’s assumptions [22]. However, 
for moderately thick cylindrical shells, the Green’s strain tensor 
predicts smaller values for critical buckling loads of the cylindrical 
shells compared to the results obtained by the other two hypotheses. It 
is worth mentioning that the present calculations are based on the first 
order definition of strains while those reported in [22] are based on the 
classical kinematic relations.

For pure mechanical loading condition, the buckling pressure (kPa) of 
a Si3N4 cylindrical shell under internal pressure reported in [23] were 
taken into consideration. As shown in Table 2, for very thin cylindrical 
shells excellent agreement can be seen between the results obtained 



ISSN: 1985-3157        Vol. 11     No. 2   July - December 2017

Journal of Advanced Manufacturing Technology

14

by the present study and those reported in [23], but for R/h=40, higher 
values of buckling pressure are produced by the Green’s hypothesis.

Numerical calculations in [23] are obtained based on the third order 
shear deformation shell theory with von Kármán- Donnell type of 
kinematic nonlinearity. The effect of the load interaction parameter 
is shown in Tables 3 and 4. The numbers in brackets indicated the 
harmonic numbers. As noted in previous section, the critical loads 
were computed for two cases of load interaction parameter. It is found 
that when a combined load was applied to the cylindrical shell and the 
response of the shell was governed by the mechanical load, the variation 
of critical buckling loads over the shell thickness was followed by a 
marked decrease (note the axial load expressed in terms of pressure 
loading). Furthermore, the smallest value of m should be set to unit 
value while n should be determined by optimization.

Table 1: Non-dimensional critical temperature (αΔTcr) for cylindrical 
shells under pure thermal loading

Journal of Advanced Manufacturing Technology (JAMT) 
 
 

Table 1: Non-dimensional critical temperature (αΔTcr) for cylindrical shells under pure thermal 
loading 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 2: Critical pressure for cylindrical shells under pure mechanical loading (L2/Rh=500) 
 

(m,n)cr R/h Source Critical Pressure (kPa) 

(1,4) 40 [23] 9112.24 

  Present study (Donnell’s 
hypothesis) 

9112.17 

  Present study (Green’s tensor) 10351.93 

(1,11) 400 [23] 87.4899 

  Present study (Donnell’s 
hypothesis) 

87.4894 

  Present study (Green’s tensor) 88.9353 

 
Table 3: Non-dimensional critical temperatures (αΔTcr×103) for a cylindrical shell (L/R=2) under 

combined load (Case I) 
 

Type of thermal 
loading 

R/h η 
Present study 

Donnell’s 
hypothesis 

Green’s tensor 

Uniform 
temperature 
increase 
 

5 0.5 45.161 (1,2) 47.373 (1,2) 
 1 28.823 (1.3) 33.127 (1,3) 

10 0.5 13.366 (1,3) 17.914 (1,3) 
 1 9.944 (1,3) 11.443 (1,3) 

20 0.5 6.347 (1,4) 6.853 (1,4) 
 1 3.598 (1,4) 3.966 (1,4) 

50 0.5 1.666 (1,5) 1.767 (1,5) 
 1 0.908 (1,5) 0.972 (1,5) 

100 0.5 0.604 (1,6) 0.631 (1,6) 
 1 0.321 (1,6) 0.338 (1,6) 

Uniform 
temperature 
gradient 

5 0.5 90.323 (1,2) 94.747 (1,2) 
 1 57.645 (1,3) 66.254 (1,3) 

10 0.5 32.732 (1,3) 35.827 (1,3) 
 1 19.887 (1,3) 22.886 (1,3) 

20 0.5 12.694 (1,4) 13.706 (1,4) 
 1 7.195 (1,4) 7.932 (1,4) 

Type of thermal 
loading 

R/h [22] 
Present study 

Donnell’s 
hypothesis 

Green’s tensor 

Uniform 
temperature 
increase 

5 0.0848 0.0771 0.0756 
10 0.0424 0.0404 0.0401 
20 0.0212 0.0207 0.0206 

100 0.0042 0.0042 0.0042 
200 0.0021 0.0021 0.0021 
1000 0.0004 0.0004 0.0004 

Uniform 
temperature 
gradient 

5 0.1696 0.1543 0.1512 
10 0.0848 0.0808 0.0803 
20 0.0424 0.0414 0.0413 

100 0.0084 0.0084 0.0084 
200 0.0042 0.0042 0.0042 
1000 0.0008 0.0008 0.0008 

Table 2: Critical pressure for cylindrical shells under pure mechanical 
loading (L2/Rh=500)
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Table 3: Non-dimensional critical temperatures (αΔTcr×103) for a 
cylindrical shell (L/R=2) under combined load (Case I)
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50 0.5 3.332 (1,5) 3.534 (1,5) 
 1 1.8154 (1,5) 1.944 (1,5) 

100 0.5 1.207 (1,6) 1.263 (1,6) 
 1 0.642 (1,6) 0.675 (1,6) 

 
Table 4: Non-dimensional critical pressure (Pcr/E×103) for a cylindrical shell (L/R=2) under combined 

load (Case II) 
 

R/h η 
Present study 

Donnell’s hypothesis Green’s tensor 
5 0.5 9.228 (1,3) 10.977 (1,3) 
 1 8.235 (1,3) 9.465 (1,3) 

10 0.5 1.591 (1,3) 1.898 (1,3) 
 1 1.420 (1,3) 1.634 (1,3) 

20 0.5 0.275 (1,4) 0.307 (1,4) 
 1 0.257 (1,4) 0.283 (1,4) 

50 0.5 0.027 (1,5) 0.029 (1,5) 
 1 0.026 (1,5) 0.027 (1,5) 

100 0.5 0.005 (1,6) 0.005 (1,6) 
 1 0.005 (1,6) 0.005 (1,6) 

 

4.0  CONCLUSIONS 
 

A closed-from solution is presented to obtain the critical temperatures and pressures for thin 
and moderately thick cylindrical shells under combined thermal and mechanical loads. The 
stability equations are established using the Green’s strain tensor in cylindrical coordinates. The 
analysis is carried out for two types of thermal loading including uniform temperature increase 
and temperature gradient. Both the Donnell’s hypothesis and Green’s strain tensor predict the 
same critical buckling loads for thin cylindrical shells but for moderately thick cylindrical shells, 
the Green’s strain tensor produces higher critical buckling loads than the Donnell’s hypothesis.  
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4.0 CONCLUSIONS

A closed-from solution is presented to obtain the critical temperatures 
and pressures for thin and moderately thick cylindrical shells under 
combined thermal and mechanical loads. The stability equations are 
established using the Green’s strain tensor in cylindrical coordinates. 
The analysis is carried out for two types of thermal loading including 
uniform temperature increase and temperature gradient. Both the 
Donnell’s hypothesis and Green’s strain tensor predict the same critical 
buckling loads for thin cylindrical shells but for moderately thick 
cylindrical shells, the Green’s strain tensor produces higher critical 
buckling loads than the Donnell’s hypothesis. 
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