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ABSTRACT:  This paper presents a simple method on equipment 
selection of vapor compression refrigerant, electric vehicle air-
conditioning system i.e. electric compressor and electronic expansion 
valve (EEV). This method utilized validated compartment cooling 
load model to identify maximum cooling capacity of selected 
vehicle specifications. The maximum cooling capacity determined 
the appropriate sizes of the compressor and electronic expansion 
valve by matching the predicted maximum cooling capacity with 
data published by the manufacturer. By using this method, the 
predicted maximum cooling capacity of a 1.6L Proton Wira Aeroback 
passenger car was estimated at 2.9 kW. The results show that the 
appropriate electric compressor and EEV for the air-conditioning 
system are from high voltage brushless DC variable speed hermetic 
compressor, type SIERRA06-0982Y3 and Danfoss EEV type ETS 6 – 
14 respectively. 

KEYWORDS: Vehicle Air-Conditioning System, Equipment Selection 
Method, Compartment Cooling Load Model, Electric Compressor, 
Electronic Expansion Valve 



ISSN: 1985-3157        Vol. 8     No. 2   July - December 2014

Journal of Advanced Manufacturing Technology

40

1.0 INTRODUCTION

In the case of electric vehicles (EVs), one of the major successful 
factors of these vehicles in future is it must meet the consumer needs 
of city driving and longer distances for holiday outings, etc. One of 
these needs is the thermal comfort which is to be provided by the air-
conditioning (A/C) systems that runs on battery. The A/C cooling load 
is the most significant auxiliary loads [1, 2], reported second largest of 
energy consumption after power train [3]. Thus, its operation becomes 
critical for full EVs due to limited battery storage capacity, limited 
battery charging station and longer time taken to charge the battery 
compared to fuel conventional internal combustion engine powered 
vehicles. The battery is not only used to run the electric motor to run 
the EV, but also to run the A/C system, as well as other accessories thus 
reducing the driving range of the EVs. Therefore, the correct size of 
component selection i.e. compressor and expansion valve in the early 
stage of system development are significant in producing efficient 
vehicle air-conditioning (VAC) system. 

Senawi [4] stated that accurate prediction of design cooling load is 
important for equipment sizing. Farrington and Rugh [5] added that 
the size of the A/C system is related to the peak thermal load in the 
vehicle, which is generally related to the maximum temperature the 
compartment will reach while soaking in the Sun. Zheng et al. [6] and 
Li and Sun [7] stressed that the first challenge in the proper sizing of 
a VAC system is to accurately determine the compartment cooling 
load. In addition, Li and Sun [7] mentioned that the determination of 
cooling load and understanding of their variations are critical for the 
efficient design of the VAC system. Several reported studies here have 
produced a good agreement that through design maximum cooling 
load, adequate cooling capacity shall be supplied by the system can be 
calculated, enabling correct size of components of VAC system.

Previous studies have reported research in cooling load model 
[8,9,10,11,12] but so far however, there has been almost none detailed 
discussion about component selection process in the public domain 
mainly due to commercial confidentiality. Therefore, it is the intent 
of this paper to introduce a simple method in equipment selection for 
vapor compression refrigerant, VAC system that could be used as a 
basis in component selection. For an exercise, the selection of electric 
compressor and EEV, aimed to be used for future energy-efficient 
electric vehicle A/C system are discussed in this paper. 
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2.0      RESEARCH METHODOLOGY

The capacities of the electric compressor and EEV for the VAC system are 
selected according to possible maximum cooling capacity imposed to 
the vehicle cabin compartment.  Figure 1 illustrates the cooling capacity 
calculation methodology in a diagrammatic form. For simplification, 
the maximum cooling capacity is determined from the hourly cooling 
capacity profile with the basis of front windscreen facing four different 
orientations i.e. North, East, South and West.  In addition, compressed 
Singapore weather data of six typical days of the year as highlighted by 
Senawi [4] is used as weather input data. Designed cabin temperature 
and humidity ratio were set at 24°C and 50% respectively. 
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Figure 1: A flow chart of electric compressor and EEV selections. 
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Figure 1: A flow chart of electric compressor and EEV selections

Since the accuracy of cooling load calculation highly depends on the 
assumption being made, a 5% heat is added to the sensible and latent 
heats due to probable error in load estimation (safety factor), as proposed 
by Arora [13]. In addition to probable heat loss, design maximum 
cooling capacity was 5% higher than design maximum cooling load. 
Then, the selection of the EEV and compressor are determined by 
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matching/mapping the maximum cooling capacity with the available 
data published by the compressor and EEV manufacturers. 

2.1        Cooling Load Mathematical Model

The hourly vehicle compartment cooling load calculation procedures is 
shown in Figure 2. Details of the validated cooling load mathematical 
model were explained by Sukri et al. [14].
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Figure 2: Simplified hourly vehicle compartment cooling load 
calculation procedures [14]

3.0      HOURLY COOLING CAPACITY PROFILE

By using vehicle compartment cooling load model as proposed by 
Sukri et at. [14], the effect of vehicle orientation on the hourly cooling 
capacity profile of a passenger car similar to 1.6 Proton Wira Aeroback 
specifications is investigated. Details of the cooling load model and 
thermophysical data of the passenger car  can be found at Sukri et 
al. [14]. The cooling load profile enables prediction of maximum 
cooling capacity to be supplied for equipment selection. Besides cabin 
temperature of 24°C and relative humidity of 50%, the other designed 
conditions are four (4) passengers include a driver, dark in vehicle 
surface color and vehicle speed of 110 km/h.  

Figure 3 to 6 show the hourly cooling capacity profile for Singapore six 
typical days with front windscreen facing North, East, South and West 
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respectively. The cooling capacity is low in the early morning hours, 
gradually increases up to a maximum between 12 noon to 1 pm and 
then slowly decreases to around its initial value. The highest cooling 
capacity typically occurs between 12.00 noon to 1 pm. Figure 3 to 6 also 
show that the hourly cooling capacity profiles for all four orientations 
are almost identical. This is due to the fact that all exterior surfaces of 
right and left doors and windows, front and rear wind screens, floor 
and roof still contribute to conductive/convective heat loads although 
the orientation is changed. Therefore, the weakest exterior surfaces, 
which are exposed to direct solar radiation at critical hours, will lead 
to the highest cooling capacity required by the cabin compartment. 
Critical hour is identified as hour where ambient dry bulb temperature, 
direct solar radiation and diffuse sky radiation incident on a horizontal 
surface are high.

From Figure 3 to 6, the highest required cooling capacity is 2.896 kW 
(2.9 kW round up), which occurs when the front windscreen is facing 
South occurs at 1.00 pm. 
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Figure 3: Cooling capacity profile during front windscreen facing North  
Figure 3: Cooling capacity profile during front windscreen facing North
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Figure 4: Cooling capacity profile during front windscreen facing East 

Figure 5: Cooling capacity profile during front windscreen facing South 

Figure 6: Cooling capacity profile during front windscreen facing West 

 

Figure 4: Cooling capacity profile during front windscreen facing East
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Figure 4: Cooling capacity profile during front windscreen facing East 

Figure 5: Cooling capacity profile during front windscreen facing South 

Figure 6: Cooling capacity profile during front windscreen facing West 

 

Figure 5: Cooling capacity profile during front windscreen facing South
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Figure 4: Cooling capacity profile during front windscreen facing East 

Figure 5: Cooling capacity profile during front windscreen facing South 

Figure 6: Cooling capacity profile during front windscreen facing West 

 

Figure 6: Cooling capacity profile during front windscreen facing West

3.1        The Compressor Selection

The selected compressor unit is from high voltage brushless DC 
variable speed hermetic compressor, type SIERRA06-0982Y3 as shown 
in Figure 7. According to manufacturer technical data as in Table 1, this 
compressor is able to produce cooling capacity between 967 W to 5401 
W at evaporating temperature of 4 to 13°C, compressor input voltage 
of 150 to 300V and compressor speed of 1800 to 6500 rpm respectively 
[15]. This compressor is selected due to the fact that the designed 
maximum cooling capacity of 2896 W is in the compressor output 
range. In addition, higher capacity of this compressor can be matched 
with higher cabin cooling capacity than maximum designed value (if 
occurs), in the case of lower setting cabin temperature than 24°C, more 
than 4 passengers in the cabin, extreme ambient conditions and higher 
vehicle speed than 110 km/h.
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Table 1: SIERRA06-0982Y3 compressor data sheet [16]
Journal of Advanced Manufacturing Technology  

Table 1: SIERRA06-0982Y3 compressor data sheet [16] 

3.2      The Electronic Expansion Valve Selection 
 

According to Figure 8, at 2.9 kW, the pulse of ETS 6 – 14 is around 275 
PS. In the case of higher cooling capacity than 2.9 kW as described in 
section 4.1, the pulse signal can be increased to meet the cooling 
demand. For refrigerant R134a, this EEV can withstands cooling 
capacity up to 4.5 kW [17].  Through these reasons, Danfoss EEV, type 
of ETS 6 – 14 as in Figure 9 is chosen as EEV for the system.  
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Conditions: =eT 5°C, =cT 38°C, Subcooling = 0°C, Superheat = 0°C 
 

Figure 9: Refrigerant capacity at different number of pulse for Danfoss EEV, 
model ETS 6   
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Figure 9: Danfoss EEV type ETS 6. (a) Actual view (b) cross sectional view 
[17] 

 

4.0 CONCL U S ION  
 

A simple method in equipment selection of vapor compression refrigerant 
electric vehicle air-conditioning system by using validated cabin compartment 
cooling load model was proposed and discussed. For designed conditions: 
cabin temperature of 24°C, relative humidity of 50%, four (4) passengers 
include a driver, dark in vehicle surface color, vehicle speed of 110 km/h 
and vehicle thermophysical data similar to 1.6L Proton Wira Aeroback, the 
designed cooling capacity is estimated around 2.9 kW. Through this 
analysis, the appropriate electric compressor and EEV are from high 
voltage brushless DC variable speed hermetic compressor, type SIERRA06-
0982Y3 and Danfoss EEV type ETS 6 – 14 respectively. In general, the 
proposed method can be used for air-conditioning system for equipment 
selection. However, further analysis i.e. laboratory testing is required to 
validate the proposed method. 
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